cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357438 Triangle T(n,k) read by rows, defined by the equation f(x, y) := Sum_{n, k} T(n, k) * y^k * x^n = 1/(1 - x*y - x^2*y*f(x, y+1)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 5, 16, 20, 10, 1, 0, 15, 51, 71, 50, 15, 1, 0, 52, 186, 281, 231, 105, 21, 1, 0, 203, 759, 1223, 1114, 616, 196, 28, 1, 0, 877, 3409, 5795, 5701, 3564, 1428, 336, 36, 1, 0, 4140, 16655, 29634, 31011, 21187, 9780
Offset: 1

Views

Author

Michael Somos, Sep 27 2022

Keywords

Comments

Row sums are A000110.

Examples

			Triangle starts:
  1,
  0,   1,
  0,   1,    1,
  0,   1,    3,    1,
  0,   2,    6,    6,    1,
  0,   5,   16,   20,   10,    1,
  0,  15,   51,   71,   50,   15,    1,
  0,  52,  186,  281,  231,  105,   21,  1,
  0, 203,  759, 1223, 1114,  616,  196,  28,  1,
  0, 877, 3409, 5795, 5701, 3564, 1428, 336, 36, 1,
  ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := If[n < 0, 0, Coefficient[SeriesCoefficient[ Nest[ 1/(1 - x*y - x^2*y*(#/.y -> y+1))&, 1 + O[x], Ceiling[n/2]], {x, 0, n}], y, k]];
  • PARI
    {T(n, k) = if(n < 0, 0, f = 1 + O(x); forstep(i=1, n, 2, f = 1/(1 - x*y - x^2*y*subst(f, y, y+1))); polcoef(polcoef(f, n), k))};

Formula

f(x, -1) = 1/(1 + x + x^2).
x + x^2*f(x, 2) = 1 - 1/f(x, 1) is g.f. for A074664.