A357485 Heinz numbers of integer partitions with the same length as reverse-alternating sum.
1, 2, 20, 42, 45, 105, 110, 125, 176, 182, 231, 245, 312, 374, 396, 429, 494, 605, 663, 680, 702, 780, 782, 845, 891, 969, 1064, 1088, 1100, 1102, 1311, 1426, 1428, 1445, 1530, 1755, 1805, 1820, 1824, 1950, 2001, 2024, 2146, 2156, 2394, 2448, 2475, 2508, 2542
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 20: {1,1,3} 42: {1,2,4} 45: {2,2,3} 105: {2,3,4} 110: {1,3,5} 125: {3,3,3} 176: {1,1,1,1,5} 182: {1,4,6} 231: {2,4,5} 245: {3,4,4} 312: {1,1,1,2,6} 374: {1,5,7} 396: {1,1,2,2,5}
Crossrefs
These partitions are counted by A357189.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Select[Range[100],PrimeOmega[#]==ats[primeMS[#]]&]
Comments