A357509 a(n) = 2*binomial(3*n,n) - 9*binomial(2*n,n).
-7, -12, -24, -12, 360, 3738, 28812, 201672, 1355112, 8936070, 58427226, 380724552, 2479017996, 16151245488, 105359408760, 688338793488, 4504288103784, 29521135717470, 193771020939510, 1273649831269200, 8382448392851610, 55234026483856110, 364347399072847320
Offset: 0
Links
- R. R. Aidagulov and M. A. Alekseyev, On p-adic approximation of sums of binomial coefficients, Journal of Mathematical Sciences 233:5 (2018), 626-634; arXiv:1602.02632 [math.NT], 2018.
- C. Helou and G. Terjanian, On Wolstenholme’s theorem and its converse, J. Number Theory 128 (2008), 475-499.
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
seq(2*binomial(3*n,n) - 9*binomial(2*n,n), n = 0..20);
Formula
a(p) == a(1) (mod p^4) for all primes p >= 5 by Meštrović, Section 3, equation 15.
Conjecture: the stronger supercongruence a(p) == a(1) (mod p^5) holds for all primes p >= 7.
The conjecture is true: apply Helou and Terjanian, Section 3, Proposition 2. - Peter Bala, Oct 22 2022
The conjecture was proved by Aidagulov and Alekseyev; see the remarks following Corollary 2. - Peter Bala, Oct 29 2022
Comments