cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357540 Coefficients T(n,k) of x^(3*n+1)*r^(3*k)/(3*n+1)! in power series S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a symmetric triangle read by rows.

Original entry on oeis.org

1, 4, 4, 160, 800, 160, 20800, 292800, 292800, 20800, 6476800, 191910400, 500121600, 191910400, 6476800, 3946624000, 210590336000, 1091343616000, 1091343616000, 210590336000, 3946624000, 4161608704000, 361556726784000, 3216369361920000, 6333406238720000, 3216369361920000, 361556726784000, 4161608704000, 6974121256960000, 919365914368000000, 12789764316088320000, 42703786876467200000
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2022

Keywords

Comments

Related to Dixon elliptic function sm(x,0) (cf. A104133).

Examples

			E.g.f.: S(x,r) = Sum_{n>=0} T(n,k) * x^(3*n+1) * r^(3*k) / (3*n+1)! begins:
S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx = x + (4 + 4*r^3)*x^4/4! + (160 + 800*r^3 + 160*r^6)*x^7/7! + (20800 + 292800*r^3 + 292800*r^6 + 20800*r^9)*x^10/10! + (6476800 + 191910400*r^3 + 500121600*r^6 + 191910400*r^9 + 6476800*r^12)*x^13/13! + (3946624000 + 210590336000*r^3 + 1091343616000*r^6 + 1091343616000*r^9 + 210590336000*r^12 + 3946624000*r^15)*x^16/16! + (4161608704000 + 361556726784000*r^3 + 3216369361920000*r^6 + 6333406238720000*r^9 + 3216369361920000*r^12 + 361556726784000*r^15 + 4161608704000*r^18)*x^19/19! + (6974121256960000 + 919365914368000000*r^3 + 12789764316088320000*r^6 + 42703786876467200000*r^9 + 42703786876467200000*r^12 + 12789764316088320000*r^15 + 919365914368000000*r^18 + 6974121256960000*r^21)*x^22/22! + ...
This table of coefficients T(n,k) of x^(3*n+1) * r^(3*k) / (3*n+1)! in S(x,r) for n >= 0, k = 0..n, begins:
n = 0: [1];
n = 1: [4, 4];
n = 2: [160, 800, 160];
n = 3: [20800, 292800, 292800, 20800];
n = 4: [6476800, 191910400, 500121600, 191910400, 6476800];
n = 5: [3946624000, 210590336000, 1091343616000, 1091343616000, 210590336000, 3946624000];
n = 6: [4161608704000, 361556726784000, 3216369361920000, 6333406238720000, 3216369361920000, 361556726784000, 4161608704000];
n = 7: [6974121256960000, 919365914368000000, 12789764316088320000, 42703786876467200000, 42703786876467200000, 12789764316088320000, 919365914368000000, 6974121256960000];
n = 8: [17455222222028800000, 3313522085749145600000, 67574136526308966400000, 348431220691544883200000, 588750579021316096000000, 348431220691544883200000, 67574136526308966400000, 3313522085749145600000, 17455222222028800000];
...
in which both column 0 and the main diagoal give the unsigned coefficients in the Dixon elliptic function sm(x,0) (cf. A104133).
RELATED SERIES.
C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx = 1 + 2*x^3/3! + (40 + 120*r^3)*x^6/6! + (3680 + 37440*r^3 + 21600*r^6)*x^9/9! + (880000 + 20592000*r^3 + 38966400*r^6 + 8553600*r^9)*x^12/12! + (435776000 + 19269888000*r^3 + 79491456000*r^6 + 57708288000*r^9 + 6329664000*r^12)*x^15/15! + (386949376000 + 28748332800000*r^3 + 213892766208000*r^6 + 335872728576000*r^9 + 123646051584000*r^12 + 7852204800000*r^15)*x^18/18! + (560034421760000 + 64544356546560000*r^3 + 774705298498560000*r^6 + 2169194182594560000*r^9 + 1730103155573760000*r^12 + 374841224017920000*r^15 + 15132769090560000*r^18)*x^21/21! + ...
where C(x,r)^3 - S(x,r)^3 = 1.
D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx = 1 + 2*r^3*x^3/3! + (120*r^3 + 40*r^6)*x^6/6! + (21600*r^3 + 37440*r^6 + 3680*r^9)*x^9/9! + (8553600*r^3 + 38966400*r^6 + 20592000*r^9 + 880000*r^12)*x^12/12! + (6329664000*r^3 + 57708288000*r^6 + 79491456000*r^9 + 19269888000*r^12 + 435776000*r^15)*x^15/15! + (7852204800000*r^3 + 123646051584000*r^6 + 335872728576000*r^9 + 213892766208000*r^12 + 28748332800000*r^15 + 386949376000*r^18)*x^18/18! + (15132769090560000*r^3 + 374841224017920000*r^6 + 1730103155573760000*r^9 + 2169194182594560000*r^12 + 774705298498560000*r^15 + 64544356546560000*r^18 + 560034421760000*r^21)*x^21/21! + ...
where D(x,r)^3 - r^3 * S(x,r)^3 = 1.
		

Crossrefs

Cf. A104133 (sm(x,0)), A357541 (C(x,r)), A357542 (D(x,r)), A357543 (row sums), A357544 (central terms).
Cf. A357800.

Programs

  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,n,
    S = intformal( C^2*D^2 +O(x^(3*n+3)));
    C = 1 + intformal( S^2*D^2);
    D = 1 + r^3*intformal( S^2*C^2); );
    (3*n+1)!*polcoeff( polcoeff(S,3*n+1,x),3*k,r)}
    for(n=0,10, for(k=0,n, print1( T(n,k),", "));print(""))
    
  • PARI
    /* Using Series Reversion (faster) */
    {T(n,k) = my(S = serreverse( intformal( 1/((1 + x^3)^2*(1 + r^3*x^3)^2 +O(x^(3*n+3)) )^(1/3) )) );
    (3*n+1)!*polcoeff( polcoeff(S,3*n+1,x),3*k,r)}
    for(n=0,10, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

Generating function S(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n+1) * r^(3*k) / (3*n+1)! and related functions C(x,r) and D(x,r) satisfy the following formulas.
For brevity, some formulas here will use S = S(x,r), C = C(x,r), and D = D(x,r).
(1.a) C(x,r)^3 - S(x,r)^3 = 1.
(1.b) D(x,r)^3 - r^3 * S(x,r)^3 = 1.
(1.c) D(x,r)^3 - r^3 * C(x,r)^3 = 1 - r^3.
Integral formulas.
(2.a) S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx.
(2.b) C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx.
(2.c) D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx.
(2.d) S(x,r)^3 = Integral 3 * S(x,r)^2 * C(x,r)^2 * D(x,r)^2 dx.
Derivatives.
(3.a) d/dx S(x,r) = C(x,r)^2 * D(x,r)^2.
(3.b) d/dx C(x,r) = S(x,r)^2 * D(x,r)^2.
(3.c) d/dx D(x,r) = r^3 * S(x,r)^2 * C(x,r)^2.
Exponential formulas.
(4.a) C - S = exp( -Integral (C + S) * D^2 dx ).
(4.b) D - r*S = exp( -r * Integral (D + r*S) * C^2 dx ).
(4.c) C + S = sqrt(C^2 - S^2) * exp( Integral D^2/(C^2 - S^2) dx ).
(4.d) D + r*S = sqrt(D^2 - r^2*S^2) * exp( r * Integral C^2/(D^2 - r^2*S^2) dx ).
(5.a) C^2 - S^2 = exp( -2 * Integral S*C/(C + S) * D^2 dx ).
(5.b) D^2 - r^2*S^2 = exp( -2*r^2 * Integral S*D/(D + r*S) * C^2 dx ).
(5.c) C^2 + S^2 = exp( 2 * Integral S*C*(C + S)/(C^2 + S^2) * D^2 dx ).
(5.d) D^2 + r^2*S^2 = exp( 2*r^2 * Integral S*D*(D + r*S)/(D^2 + r^2*S^2) * C^2 dx ).
Hyperbolic functions.
(6.a) C = sqrt(C^2 - S^2) * cosh( Integral D^2/(C^2 - S^2) dx ).
(6.b) S = sqrt(C^2 - S^2) * sinh( Integral D^2/(C^2 - S^2) dx ).
(6.c) D = sqrt(D^2 - r^2*S^2) * cosh( r * Integral C^2/(D^2 - r^2*S^2) dx ).
(6.d) r*S = sqrt(D^2 - r^2*S^2) * sinh( r * Integral C^2/(D^2 - r^2*S^2) dx ).
Other formulas.
(7) S(x,r) = Series_Reversion( Integral ( (1 + x^3)^2 * (1 + r^3*x^3)^2 )^(-1/3) dx ).
(8.a) T(n,0) = T(n,n) = (-1)^n * A104133(n).
(8.b) Sum_{k=0..n} T(n,k) = (3*n+1)!/(3^n*n!) * Product_{k=1..n} (3*k - 2) = A357543(n), for n >= 0.
Showing 1-1 of 1 results.