cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357549 a(n) = floor( Sum_{k=0..n-1} n^k / (k! * a(k)) ), for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 3, 5, 9, 17, 30, 52, 91, 161, 285, 503, 889, 1573, 2782, 4920, 8697, 15368, 27146, 47928, 84590, 149246, 263247, 464214, 818445, 1442762, 2543025, 4482001, 7898979, 13920609, 24532535, 43234510, 76195273, 134288583, 236682848, 417170144, 735325596, 1296184444
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2022

Keywords

Comments

Limit_{n->oo} a(n)/a(n+1) = w = exp(-w) = LambertW(1), the omega constant A030178.

Examples

			a(n) = floor(1 + n/a(1) + n^2/(2!*a(2)) + n^3/(3!*a(3)) + n^4/(4!*a(4)) + n^5/(5!*a(5)) + ... + n^(n-1)/((n-1)!*a(n-1)) ), for n > 0 with a(0) = 1.
To generate this sequence, start with a(0) = 1 and proceed as follows:
a(1) = 1;
a(2) = 1 + 2;
a(3) = floor(1 + 3 + 3^2/(2!*3)) = 5;
a(4) = floor(1 + 4 + 4^2/(2!*3) + 4^3/(3!*5)) = 9;
a(5) = floor(1 + 5 + 5^2/(2!*3) + 5^3/(3!*5) + 5^4/(4!*9)) = 17;
a(6) = floor(1 + 6 + 6^2/(2!*3) + 6^3/(3!*5) + 6^4/(4!*9) + 6^5/(5!*17)) = 30;
a(7) = floor(1 + 7 + 7^2/(2!*3) + 7^3/(3!*5) + 7^4/(4!*9) + 7^5/(5!*17) + 7^6/(6!*30)) = 52;
a(8) = floor(1 + 8 + 8^2/(2!*3) + 8^3/(3!*5) + 8^4/(4!*9) + 8^5/(5!*17) + 8^6/(6!*30) + 8^7/(7!*52)) = 91;
...
The terms of this sequence are computed from partial sums; the actual infinite sums: Sum_{k>=0} n^k / (k!*a(k)), for n >= 1, begin:
n = 1: 2.205170228313619257204573175905229637440183827382...
n = 2: 4.026624683096007253196633437972996492234406960420...
n = 3: 6.938404847258827610039050722524656436473915836809...
n = 4: 11.76290965545838695557108226269004580813840600527...
n = 5: 19.93268682960501544009268973006846510258954225008...
n = 6: 33.95355685301572322838214122801051011301028947272...
n = 7: 58.22316762392820953863455561301453509123241732275...
n = 8: 100.4764040611128933206396099594217599817997316217...
n = 9: 174.3356399991557294349025383486302219269780824259...
n = 10: 303.8074912728852469034815183896362125031997652232...
...
		

Crossrefs

Cf. A030178.

Programs

  • PARI
    /* Print a(n) for n = 0 through N */
    N = 40; A=vector(N+1);
    { a(n) = if(n<0,0, A[n+1] = if(n<1,1, floor( sum(k=0,n-1, n^k/k!/A[k+1]) ) )) }
    for(n=0,N,print1(a(n),", "))