A357563 a(n) = b(n) - 2*b(b(b(n))) for n >= 3, where b(n) = A356988(n).
0, 1, 1, 0, 1, 1, 0, 1, 2, 2, 2, 1, 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
Offset: 3
Links
- Peter Bala, Notes on A357563
Programs
-
Maple
# b(n) = A356988(n) b := proc(n) option remember; if n = 1 then 1 else n - b(b(n - b(b(b(n-1))))) end if; end proc: seq( b(n) - 2*b(b(b(n))), n = 3..100);
Formula
For k >= 2 there holds
a(3*Fibonacci(k) + j) = j for 0 <= j <= Fibonacci(k-1) (rise from 0 to plateau)
a(Lucas(k+1) + j) = Fibonacci(k-1) for 0 <= j <= Fibonacci(k-1) (plateau)
a(Fibonacci(k+3) + j) = Fibonacci(k-1) - j for 0 <= j <= Fibonacci(k-1) (descent back to 0).
Comments