cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357573 Largest even k such that h(-k) = 2n, where h(D) is the class number of the quadratic field with discriminant D; or 0 if no such k exists.

Original entry on oeis.org

232, 1012, 1588, 3448, 5272, 8248, 9172, 14008, 21652, 21508, 26548, 32008, 45208, 53188, 57688, 65668, 73588, 85012, 121972, 120712, 117748, 137272, 189352, 162628, 174868, 201268, 194968, 249208, 188248, 332872, 341608, 424708, 370792, 411832, 377512, 539092, 332308, 486088, 369832, 435268, 604948, 667192, 548788, 601528, 596212, 566008, 737752, 795832, 645208, 802888
Offset: 1

Views

Author

Jianing Song, Oct 03 2022

Keywords

Comments

By definition, a(n) <= 4*A038552(2n).
Conjecture: if A038552(2n) == 3 (mod 4), a(n) > 0, then a(n) < A038552(2n). If this is true, then A038552(n) is also the largest absolute value of negative fundamental discriminant d for class number n.

Examples

			a(1) = 232: h(-k) = 2 <=> k = 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427, so the largest even k such that h(-k) = 2 is k = 232.
		

Crossrefs