cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357609 Numbers k such that k, k+1, and k+2 are all in A357605.

Original entry on oeis.org

10667829248, 14322877568, 25929352448, 26967189248, 31315096448, 32186016224, 35337613310, 36312573374, 41326711424, 53162460350, 69405075584, 71840196350, 72806666750, 73217757248, 83103523424, 106184935934, 109302242048, 111640866974, 115294917374, 116768901248
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

Numbers k such that A162296(k) > 2*k, A162296(k+1) > 2*(k+1), and A162296(k+2) > 2*(k+2).

Examples

			10667829248 is a term since 10667829248, 10667829249 and 10667829250 are all in A357605: A162296(10667829248) = 21342038784 > 2*10667829248, A162296(10667829249) = 21798236160 > 2*10667829249 and A162296(10667829250) = 21810824640 > 2*10667829250.
		

Crossrefs

Cf. A162296.
Subsequence of A013929, A096536, A357605 and A357608.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; v = Cases[Import["https://oeis.org/A096536/b096536.txt", "Table"], {, }][[;; , 2]]; s = {}; Do[n = v[[k]]; If[q[n] && q[n+1] && q[n+2], AppendTo[s, n]], {k, 1, Length[v]}]; s

A380933 Numbers k such that k and k+1 are both in A380929.

Original entry on oeis.org

121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1).

Examples

			121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
		

Crossrefs

Subsequence of A096399 and A380929.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
    seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
    seq[3*10^8]
  • PARI
    isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
    list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));
Showing 1-2 of 2 results.