cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366422 Numbers k such that k^4*2^k + 1 is a prime.

Original entry on oeis.org

1, 24, 33, 36, 99, 195, 244, 464, 567, 621, 741, 1395, 2164, 3309, 3537, 3708, 4413, 5001, 5187, 5292, 15504, 18816, 19521, 24657, 27972, 57687
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 16 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Nov 17 2023

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), this sequence (m = 4).

Programs

  • Magma
    [k: k in [0..4000] | IsPrime(k^4*2^k+1)];
  • Mathematica
    Select[Range[6000], PrimeQ[#^4*2^# + 1] &] (* Amiram Eldar, Nov 16 2023 *)

Extensions

a(22)-a(25) from Amiram Eldar, Nov 17 2023
a(26) from Michael S. Branicky, Nov 17 2023

A367421 Numbers k such that k^5*2^k + 1 is a prime.

Original entry on oeis.org

1, 41, 53, 231, 532, 1632, 1642, 9701, 13372, 19613, 25518, 31929, 92476, 97433
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 18 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), this sequence (m = 5).

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^5*2^k+1)];
  • Mathematica
    Select[Range[2000], PrimeQ[#^5*2^# + 1] &] (* Amiram Eldar, Nov 18 2023 *)

Extensions

a(10)-a(12) from Michael S. Branicky, Nov 18 2023
a(13)-a(14) from Michael S. Branicky, Aug 26 2024

A367287 Numbers k such that k^6*2^k + 1 is a prime.

Original entry on oeis.org

1, 2, 4, 62, 80, 122, 136, 658, 1918, 2998, 3404, 4042, 5678, 8378, 10438, 23530, 24610, 29090, 41650, 120818
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 21 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Nov 22 2023

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), A367421 (m = 5), this sequence (m = 6).
Cf. A367478.

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^6*2^k + 1)];

Extensions

a(16)-a(19) from Michael S. Branicky, Nov 21 2023
a(20) from Michael S. Branicky, Aug 30 2024

A367560 Numbers k such that k^7*2^k + 1 is a prime.

Original entry on oeis.org

1, 3, 11, 51, 76, 123, 149, 274, 311, 328, 381, 639, 737, 898, 1156, 9017, 13200, 18348, 26388, 30081
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Aug 28 2024

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), A367421 (m = 5), A367287 (m = 6), this sequence (m = 7).
Cf. A092506.

Programs

  • Magma
    [k: k in [1..2000] | IsPrime(k^7*2^k+1)];

Extensions

a(18)-a(20) from Michael S. Branicky, Nov 22 2023
Showing 1-4 of 4 results.