A366422
Numbers k such that k^4*2^k + 1 is a prime.
Original entry on oeis.org
1, 24, 33, 36, 99, 195, 244, 464, 567, 621, 741, 1395, 2164, 3309, 3537, 3708, 4413, 5001, 5187, 5292, 15504, 18816, 19521, 24657, 27972, 57687
Offset: 1
Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0),
A005849 (m = 1),
A058780 (m = 2),
A357612 (m = 3), this sequence (m = 4).
-
[k: k in [0..4000] | IsPrime(k^4*2^k+1)];
-
Select[Range[6000], PrimeQ[#^4*2^# + 1] &] (* Amiram Eldar, Nov 16 2023 *)
A367421
Numbers k such that k^5*2^k + 1 is a prime.
Original entry on oeis.org
1, 41, 53, 231, 532, 1632, 1642, 9701, 13372, 19613, 25518, 31929, 92476, 97433
Offset: 1
Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0),
A005849 (m = 1),
A058780 (m = 2),
A357612 (m = 3),
A366422 (m = 4), this sequence (m = 5).
-
[k: k in [1..1000] | IsPrime(k^5*2^k+1)];
-
Select[Range[2000], PrimeQ[#^5*2^# + 1] &] (* Amiram Eldar, Nov 18 2023 *)
A367287
Numbers k such that k^6*2^k + 1 is a prime.
Original entry on oeis.org
1, 2, 4, 62, 80, 122, 136, 658, 1918, 2998, 3404, 4042, 5678, 8378, 10438, 23530, 24610, 29090, 41650, 120818
Offset: 1
Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0),
A005849 (m = 1),
A058780 (m = 2),
A357612 (m = 3),
A366422 (m = 4),
A367421 (m = 5), this sequence (m = 6).
A367560
Numbers k such that k^7*2^k + 1 is a prime.
Original entry on oeis.org
1, 3, 11, 51, 76, 123, 149, 274, 311, 328, 381, 639, 737, 898, 1156, 9017, 13200, 18348, 26388, 30081
Offset: 1
Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0),
A005849 (m = 1),
A058780 (m = 2),
A357612 (m = 3),
A366422 (m = 4),
A367421 (m = 5),
A367287 (m = 6), this sequence (m = 7).
Showing 1-4 of 4 results.
Comments