A357635 Numbers k such that the half-alternating sum of the partition having Heinz number k is 1.
2, 8, 24, 32, 54, 128, 135, 162, 375, 384, 512, 648, 864, 875, 1250, 1715, 1944, 2048, 2160, 2592, 3773, 4374, 4802, 5000, 6000, 6144, 8192, 9317, 10368, 10935, 13122, 13824, 14000, 15000, 17303, 19208, 20000, 24167, 27440, 29282, 30375, 31104, 32768, 33750
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 8: {1,1,1} 24: {1,1,1,2} 32: {1,1,1,1,1} 54: {1,2,2,2} 128: {1,1,1,1,1,1,1} 135: {2,2,2,3} 162: {1,2,2,2,2} 375: {2,3,3,3} 384: {1,1,1,1,1,1,1,2} 512: {1,1,1,1,1,1,1,1,1} 648: {1,1,1,2,2,2,2} 864: {1,1,1,1,1,2,2,2} 875: {3,3,3,4}
Crossrefs
The version for original alternating sum is A345958.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; Select[Range[1000],halfats[Reverse[primeMS[#]]]==1&]
Comments