cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357636 Numbers k such that the skew-alternating sum of the partition having Heinz number k is 0.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 36, 49, 63, 64, 70, 81, 90, 100, 108, 121, 144, 154, 165, 169, 192, 196, 210, 225, 256, 273, 286, 289, 300, 324, 325, 360, 361, 400, 441, 442, 462, 480, 484, 525, 529, 550, 561, 576, 588, 595, 625, 646, 676, 700, 729, 741, 750, 784
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   25: {3,3}
   30: {1,2,3}
   36: {1,1,2,2}
   49: {4,4}
   63: {2,2,4}
   64: {1,1,1,1,1,1}
   70: {1,3,4}
   81: {2,2,2,2}
   90: {1,2,2,3}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  121: {5,5}
  144: {1,1,1,1,2,2}
		

Crossrefs

The version for original alternating sum is A000290.
The half-alternating form is A000583, non-reverse A357631.
The version for standard compositions is A357628, non-reverse A357627.
The non-reverse version is A357632.
Positions of zeros in A357634, non-reverse A357630.
These partitions are counted by A357640, half A357639.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Select[Range[1000],skats[Reverse[primeMS[#]]]==0&]