A357636 Numbers k such that the skew-alternating sum of the partition having Heinz number k is 0.
1, 4, 9, 12, 16, 25, 30, 36, 49, 63, 64, 70, 81, 90, 100, 108, 121, 144, 154, 165, 169, 192, 196, 210, 225, 256, 273, 286, 289, 300, 324, 325, 360, 361, 400, 441, 442, 462, 480, 484, 525, 529, 550, 561, 576, 588, 595, 625, 646, 676, 700, 729, 741, 750, 784
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 4: {1,1} 9: {2,2} 12: {1,1,2} 16: {1,1,1,1} 25: {3,3} 30: {1,2,3} 36: {1,1,2,2} 49: {4,4} 63: {2,2,4} 64: {1,1,1,1,1,1} 70: {1,3,4} 81: {2,2,2,2} 90: {1,2,2,3} 100: {1,1,3,3} 108: {1,1,2,2,2} 121: {5,5} 144: {1,1,1,1,2,2}
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; Select[Range[1000],skats[Reverse[primeMS[#]]]==0&]
Comments