cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A357639 Number of reversed integer partitions of 2n whose half-alternating sum is 0.

Original entry on oeis.org

1, 0, 2, 1, 6, 4, 15, 13, 37, 37, 86, 94, 194, 223, 416, 497, 867, 1056, 1746, 2159, 3424, 4272, 6546, 8215, 12248, 15418, 22449, 28311, 40415, 50985, 71543, 90222, 124730, 157132, 214392, 269696, 363733, 456739, 609611, 763969, 1010203, 1263248, 1656335, 2066552, 2688866
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			The a(0) = 1 through a(6) = 15 reversed partitions:
  ()  .  (112)   (123)  (134)       (145)      (156)
         (1111)         (224)       (235)      (246)
                        (2222)      (11233)    (336)
                        (11222)     (1111123)  (3333)
                        (1111112)              (11244)
                        (11111111)             (11334)
                                               (12333)
                                               (1111134)
                                               (1111224)
                                               (1112223)
                                               (1122222)
                                               (11112222)
                                               (111111222)
                                               (11111111112)
                                               (111111111111)
		

Crossrefs

The non-reverse version is A035363/A035444.
The non-reverse skew version appears to be A035544/A035594.
These partitions are ranked by A357631, skew A357632.
The skew-alternating version is A357640.
This is the central column of A357704.
A000041 counts integer partitions (also reversed integer partitions).
A316524 gives alternating sum of prime indices, reverse A344616.
A344651 counts alternating sum of partitions by length, ordered A097805.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.
A357637 counts partitions by half-alternating sum, skew A357637.

Programs

  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[2n],halfats[Reverse[#]]==0&]],{n,0,15}]

Extensions

a(31) onwards from Lucas A. Brown, Oct 19 2022

A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 4, 4, 1, 1, 0, 0, 0, 4, 5, 4, 1, 1, 0, 0, 0, 1, 10, 5, 4, 1, 1, 0, 0, 0, 1, 5, 13, 5, 4, 1, 1, 0, 0, 0, 0, 4, 13, 14, 5, 4, 1, 1, 0, 0, 0, 0, 1, 13, 17, 14, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  0  3  1  1
  0  0  1  4  1  1
  0  0  1  4  4  1  1
  0  0  0  4  5  4  1  1
  0  0  0  1 10  5  4  1  1
  0  0  0  1  5 13  5  4  1  1
  0  0  0  0  4 13 14  5  4  1  1
  0  0  0  0  1 13 17 14  5  4  1  1
  0  0  0  0  1  5 28 18 14  5  4  1  1
Row n = 7 counts the following partitions:
  .  .  .  (322)      (43)      (52)     (61)  (7)
           (331)      (421)     (511)
           (2221)     (3211)    (4111)
           (1111111)  (22111)   (31111)
                      (211111)
		

Crossrefs

Row sums are A000041.
Number of nonzero entries in row n appears to be A004396(n+1).
First nonzero entry of each row appears to converge to A146325.
The central column is A035544, half A035363.
Column sums appear to be A298311.
For original alternating sum we have A344651, ordered A097805.
The half-alternating version is A357637.
The ordered version (compositions) is A357646, half A357645.
The reverse version is A357705, half A357704.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],skats[#]==k&]],{n,0,12},{k,-n,n,2}]

Formula

Conjecture: The columns are palindromes with sums A298311.

A357629 Half-alternating sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 1, 4, 4, 5, 0, 6, 5, 5, 0, 7, 1, 8, -1, 6, 6, 9, -1, 6, 7, 2, -2, 10, 0, 11, 1, 7, 8, 7, -2, 12, 9, 8, -2, 13, -1, 14, -3, 1, 10, 15, 2, 8, 1, 9, -4, 16, -1, 8, -3, 10, 11, 17, -3, 18, 12, 0, 2, 9, -2, 19, -5, 11, 0, 20, 1, 21, 13, 2, -6
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 525 are {2,3,3,4} so a(525) = 2 + 3 - 3 - 4 = -2.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The version for standard compositions is A357621, reverse A357622.
The skew-alternating form is A357630, reverse A357634.
Positions of zeros are A357631, reverse A357635.
The reverse version is A357633.
These partitions are counted by A357637, skew A357638.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[halfats[primeMS[n]],{n,30}]

A357631 Numbers k such that the half-alternating sum of the prime indices of k is 0.

Original entry on oeis.org

1, 12, 16, 30, 63, 70, 81, 108, 154, 165, 192, 256, 273, 286, 300, 325, 442, 480, 561, 588, 595, 625, 646, 700, 741, 750, 874, 931, 972, 1008, 1045, 1080, 1120, 1173, 1296, 1334, 1452, 1470, 1495, 1540, 1653, 1728, 1771, 1798, 2028, 2139, 2294, 2401, 2430
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If k is a term, then so is m^4 * k for any m >= 1. - Robert Israel, Oct 10 2023

Examples

			The terms together with their prime indices begin:
    1: {}
   12: {1,1,2}
   16: {1,1,1,1}
   30: {1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  154: {1,4,5}
  165: {2,3,5}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  273: {2,4,6}
  286: {1,5,6}
  300: {1,1,2,3,3}
		

Crossrefs

The version for original alternating sum is A000290.
The version for standard compositions is A357625, reverse A357626.
Positions of zeros in A357629, reverse A357633.
The skew-alternating form is A357632, reverse A357636.
The reverse version is A357635.
These partitions are counted by A357639, skew A357640.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even A357642.

Programs

  • Maple
    f:= proc(n) local F,Q,i;
    F:= sort(ifactors(n)[2],(s,t) -> s[1] numtheory:-pi(t[1])$t[2],F);
    Q:= [-1,1,1,-1];
    add(Q[i mod 4 + 1]*F[i],i=1..nops(F))
    end proc:
    select(f=0, [$1..10000]); # Robert Israel, Oct 10 2023
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[1000],halfats[primeMS[#]]==0&]

A357640 Number of reversed integer partitions of 2n whose skew-alternating sum is 0.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 24, 40, 59, 93, 136, 208, 299, 445, 632, 921, 1292, 1848, 2563, 3610, 4954, 6881, 9353, 12835, 17290, 23469, 31357, 42150, 55889, 74463, 98038, 129573, 169476, 222339, 289029, 376618, 486773, 630313, 810285, 1043123, 1334174
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			The a(0) = 1 through a(5) = 9 partitions:
  ()  (11)  (22)    (33)      (44)        (55)
            (1111)  (2211)    (2222)      (3322)
                    (111111)  (3221)      (4321)
                              (3311)      (4411)
                              (221111)    (222211)
                              (11111111)  (322111)
                                          (331111)
                                          (22111111)
                                          (1111111111)
		

Crossrefs

The non-reverse half-alternating version is A035363/A035444.
The non-reverse version appears to be A035544/A035594.
These partitions are ranked by A357632, half A357631.
The half-alternating version is A357639.
A000041 counts integer partitions (also reversed integer partitions).
A316524 gives alternating sum of prime indices, reverse A344616.
A344651 counts alternating sum of partitions by length, ordered A097805.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[2n],skats[Reverse[#]]==0&]],{n,0,15}]

Extensions

a(31) onwards from Lucas A. Brown, Oct 19 2022

A357630 Skew-alternating sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 0, 3, -1, 4, -1, 0, -2, 5, -2, 6, -3, -1, 0, 7, -3, 8, -3, -2, -4, 9, 1, 0, -5, -2, -4, 10, -4, 11, 1, -3, -6, -1, 0, 12, -7, -4, 2, 13, -5, 14, -5, -3, -8, 15, 2, 0, -5, -5, -6, 16, -1, -2, 3, -6, -9, 17, 1, 18, -10, -4, 0, -3, -6, 19, -7, -7, -6, 20
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 525 are {2,3,3,4} so a(525) = 2 - 3 - 3 + 4 = 0.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The reverse version is A357634.
The half-alternating form is A357629, reverse A357633.
Positions of zeros are A357632, reverse A357636.
The version for standard compositions is A357623, reverse A357624.
These partitions are counted by A357638, half A357637.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[skats[primeMS[n]],{n,30}]

A357634 Skew-alternating sum of the partition having Heinz number n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, -1, 0, 2, 5, 0, 6, 3, 1, 0, 7, -1, 8, 1, 2, 4, 9, 1, 0, 5, -2, 2, 10, 0, 11, 1, 3, 6, 1, 0, 12, 7, 4, 2, 13, 1, 14, 3, -1, 8, 15, 2, 0, -1, 5, 4, 16, -1, 2, 3, 6, 9, 17, 1, 18, 10, 0, 0, 3, 2, 19, 5, 7, 0, 20, 1, 21, 11, -2, 6, 1, 3, 22, 3
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition with Heinz number 525 is (4,3,3,2) so a(525) = 4 - 3 - 3 + 2 = 0.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The non-reverse version is A357630.
The half-alternating form is A357633, non-reverse A357629.
Positions of zeros are A357636, non-reverse A357632.
The version for standard compositions is A357624, non-reverse A357623.
These partitions are counted by A357638, half A357637.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[skats[Reverse[primeMS[n]]],{n,30}]

A357632 Numbers k such that the skew-alternating sum of the prime indices of k is 0.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 90, 100, 121, 144, 169, 196, 210, 225, 256, 289, 324, 360, 361, 400, 441, 462, 484, 525, 529, 550, 576, 625, 676, 729, 784, 840, 841, 858, 900, 910, 961, 1024, 1089, 1155, 1156, 1225, 1296, 1326, 1369, 1440, 1444, 1521, 1600
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    36: {1,1,2,2}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   100: {1,1,3,3}
   121: {5,5}
   144: {1,1,1,1,2,2}
		

Crossrefs

The version for original alternating sum is A000290.
The version for standard compositions is A357627, reverse A357628.
Positions of zeros in A357630, reverse A357634.
The half-alternating form is A357631, reverse A357635.
The reverse version is A357636.
These partitions are counted by A357640, half A357639.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Select[Range[1000],skats[primeMS[#]]==0&]

A357633 Half-alternating sum of the partition having Heinz number n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 1, 4, 4, 5, 2, 6, 5, 5, 0, 7, 3, 8, 3, 6, 6, 9, 1, 6, 7, 2, 4, 10, 4, 11, 1, 7, 8, 7, 2, 12, 9, 8, 2, 13, 5, 14, 5, 3, 10, 15, 2, 8, 5, 9, 6, 16, 1, 8, 3, 10, 11, 17, 3, 18, 12, 4, 2, 9, 6, 19, 7, 11, 6, 20, 3, 21, 13, 4, 8, 9, 7, 22, 3, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition with Heinz number 525 is (4,3,3,2) so a(525) = 4 + 3 - 3 - 2 = 2.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The version for standard compositions is A357622, non-reverse A357621.
The skew-alternating form is A357634, non-reverse A357630.
Positions of zeros are A000583, non-reverse A357631.
The reverse version is A357629.
These partitions are counted by A357637, skew A357638.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[halfats[Reverse[primeMS[n]]],{n,30}]

A035544 Number of partitions of n with equal number of parts congruent to each of 1 and 3 (mod 4).

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 4, 0, 10, 0, 13, 0, 28, 0, 37, 0, 72, 0, 96, 0, 172, 0, 230, 0, 391, 0, 522, 0, 846, 0, 1129, 0, 1766, 0, 2348, 0, 3564, 0, 4722, 0, 6992, 0, 9226, 0, 13371, 0, 17568, 0, 25006, 0, 32708, 0, 45817, 0, 59668, 0, 82430, 0, 106874, 0, 145830, 0, 188260, 0
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, Oct 12 2022: (Start)
Also the number of integer partitions of n whose skew-alternating sum is 0, where we define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ... These are the conjugates of the partitions described in the name. For example, the a(0) = 1 through a(8) = 10 partitions are:
() . (11) . (22) . (33) . (44)
(211) (321) (422)
(1111) (2211) (431)
(111111) (2222)
(3221)
(3311)
(22211)
(221111)
(2111111)
(11111111)
The ordered version (compositions) is A138364
These partitions are ranked by A357636, reverse A357632.
The reverse version is A357640 (aerated).
(End)

Examples

			From _Gus Wiseman_, Oct 12 2022: (Start)
The a(0) = 1 through a(8) = 10 partitions:
  ()  .  (2)  .  (4)   .  (6)    .  (8)
                 (22)     (42)      (44)
                 (31)     (222)     (53)
                          (321)     (62)
                                    (71)
                                    (422)
                                    (431)
                                    (2222)
                                    (3221)
                                    (3311)
(End)
		

Crossrefs

The case with at least one odd part is A035550.
Removing zeros gives A035594.
Central column k=0 of A357638.
These partitions are ranked by A357707.
A000041 counts integer partitions.
A344651 counts partitions by alternating sum, ordered A097805.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],skats[#]==0&]],{n,0,30}] (* Gus Wiseman,Oct 12 2022 *)

Extensions

More terms from David W. Wilson
Showing 1-10 of 17 results. Next