A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 4, 4, 1, 1, 0, 0, 0, 4, 5, 4, 1, 1, 0, 0, 0, 1, 10, 5, 4, 1, 1, 0, 0, 0, 1, 5, 13, 5, 4, 1, 1, 0, 0, 0, 0, 4, 13, 14, 5, 4, 1, 1, 0, 0, 0, 0, 1, 13, 17, 14, 5, 4, 1, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 0 3 1 1 0 0 1 4 1 1 0 0 1 4 4 1 1 0 0 0 4 5 4 1 1 0 0 0 1 10 5 4 1 1 0 0 0 1 5 13 5 4 1 1 0 0 0 0 4 13 14 5 4 1 1 0 0 0 0 1 13 17 14 5 4 1 1 0 0 0 0 1 5 28 18 14 5 4 1 1 Row n = 7 counts the following partitions: . . . (322) (43) (52) (61) (7) (331) (421) (511) (2221) (3211) (4111) (1111111) (22111) (31111) (211111)
Crossrefs
Programs
-
Mathematica
skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; Table[Length[Select[IntegerPartitions[n],skats[#]==k&]],{n,0,12},{k,-n,n,2}]
Formula
Conjecture: The columns are palindromes with sums A298311.
Comments