cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357641 Number of integer compositions of 2n whose half-alternating sum is 0.

Original entry on oeis.org

1, 0, 2, 8, 28, 104, 396, 1504, 5720, 21872, 83980, 323344, 1248072, 4828784, 18721080, 72711552, 282861360, 1101980000, 4298748300, 16789002736, 65641204200, 256895795312, 1006308200040, 3945185586368, 15478849767888, 60774329914144, 238775589937976
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			The a(0) = 1 through a(3) = 8 compositions:
  ()  .  (112)   (123)
         (1111)  (213)
                 (1212)
                 (1221)
                 (2112)
                 (2121)
                 (11121)
                 (11211)
		

Crossrefs

The skew-alternating version appears to be A001700.
The version for partitions is A035363.
The skew-alternating form is A088218 (also for full alternating sum).
These compositions are ranked by A357625, reverse A357626.
For reversed partitions we have A357639, ranked by A357631.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357621 = half-alternating sum of standard compositions, reverse A357622.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 0, 2][n+1],
          (8*(n-3)*(5*n-7)*(2*n-5)*a(n-3) -4*(5*n-12)*(n-2)^2*a(n-2)
           +2*(2*n-5)*(5*n-7)*n*a(n-1))/((5*n-12)*(n+1)*(n-2)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 19 2022
  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n],halfats[#]==0&]],{n,0,7}]

Extensions

a(11)-a(26) from Alois P. Heinz, Oct 19 2022