A357645 Triangle read by rows where T(n,k) is the number of integer compositions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 2, 2, 4, 0, 0, 3, 5, 3, 5, 0, 0, 4, 8, 10, 4, 6, 0, 0, 5, 11, 18, 18, 5, 7, 0, 0, 6, 14, 28, 36, 30, 6, 8, 0, 0, 7, 17, 41, 63, 65, 47, 7, 9, 0, 0, 8, 20, 58, 104, 126, 108, 70, 8, 10, 0, 0, 9, 23, 80, 164, 230, 230, 168, 100, 9, 11
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 2 0 0 1 3 0 0 2 2 4 0 0 3 5 3 5 0 0 4 8 10 4 6 0 0 5 11 18 18 5 7 0 0 6 14 28 36 30 6 8 0 0 7 17 41 63 65 47 7 9 0 0 8 20 58 104 126 108 70 8 10 Row n = 6 counts the following compositions: (114) (123) (132) (141) (6) (1113) (213) (222) (231) (15) (1122) (1212) (312) (321) (24) (1131) (1221) (1311) (411) (33) (2112) (2211) (42) (2121) (3111) (51) (11121) (11112) (11211) (12111) (21111) (111111)
Crossrefs
Programs
-
Mathematica
halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],halfats[#]==k&]],{n,0,10},{k,-n,n,2}]
Comments