cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357646 Triangle read by rows where T(n,k) is the number of integer compositions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 0, 4, 5, 5, 1, 1, 0, 5, 7, 10, 8, 1, 1, 0, 6, 9, 17, 18, 12, 1, 1, 0, 7, 11, 27, 35, 29, 17, 1, 1, 0, 8, 13, 41, 63, 63, 43, 23, 1, 1, 0, 9, 15, 60, 106, 126, 104, 60, 30, 1, 1, 0, 10, 17, 85, 168, 232, 230, 162, 80, 38, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   1   1
   0   3   3   1   1
   0   4   5   5   1   1
   0   5   7  10   8   1   1
   0   6   9  17  18  12   1   1
   0   7  11  27  35  29  17   1   1
   0   8  13  41  63  63  43  23   1   1
   0   9  15  60 106 126 104  60  30   1   1
Row n = 6 counts the following compositions:
  (15)   (24)    (33)      (42)     (51)  (6)
  (114)  (213)   (312)     (411)
  (123)  (222)   (321)     (1113)
  (132)  (231)   (1122)    (2112)
  (141)  (1131)  (1212)    (3111)
         (1221)  (2121)    (11112)
         (1311)  (2211)    (11121)
                 (11211)   (21111)
                 (12111)
                 (111111)
		

Crossrefs

The central column k=0 is A001700 (aerated), half A357641.
Row sums are A011782.
For original alternating sum we have A097805, unordered A344651.
The skew-alternating sum of standard compositions is A357623, half A357621.
The case of partitions is A357638, half A357637.
The half-alternating version is A357645.
The reverse version for partitions is A357705, half A357704.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],skats[#]==k&]],{n,0,10},{k,-n,n,2}]