A357652 Number of pairs of Dyck paths of semilength n such that the midpoint of the first is not below the midpoint of the second.
1, 1, 3, 21, 147, 1323, 12618, 131085, 1430187, 16297347, 191987562, 2325379147, 28821761290, 364290802138, 4682375323044, 61067639131197, 806671205158587, 10776418254992139, 145413196382253114, 1979833455619072515, 27174458892459331530, 375722890152963114330
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..839
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 1, (2*n*(90*n^5-309*n^4+147*n^3+ 124*n^2-135*n+35)*b(n-1)+4*(n-1)^2*(4*n-5)*(4*n-3)*(15*n^2-4*n-12)* b(n-2))/(n*(n+1)^3*(15*n^2-34*n+7))) end: a:= n-> ((binomial(n+n, n)/(n+1))^2+b(n))/2: seq(a(n), n=0..21);