cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357655 Total number of nodes summed over all lattice paths from (0,0) to (i,n-2*i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}.

Original entry on oeis.org

1, 0, 2, 3, 3, 8, 14, 15, 35, 59, 69, 147, 245, 300, 608, 1005, 1269, 2489, 4091, 5280, 10120, 16565, 21735, 40950, 66820, 88815, 165125, 268785, 361005, 664108, 1078904, 1461609, 2665617, 4323643, 5899917, 10682712, 17304516, 23759955, 42759385, 69187281
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2022

Keywords

Crossrefs

Cf. A357654.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(min(x, y)<0 or y>x, 0, `if`(
           max(x, y)=0, [1$2], (p-> p+[0, p[1]])(b(x-1, y)+b(x, y-1))))
        end:
    a:= n-> add(b(i, n-2*i), i=ceil(n/3)..floor(n/2))[2]:
    seq(a(n), n=0..39);
  • Mathematica
    b[x_, y_] := b[x, y] = If[Min[x, y] < 0 || y > x, {0, 0}, If[Max[x, y] == 0, {1, 1}, Function[p, p + {0, p[[1]]}][b[x - 1, y] + b[x, y - 1]]]];
    a[n_] :=  If[n == 1, 0, Sum[b[i, n - 2i], {i, Ceiling[n/3], Floor[n/2]}][[2]]];
    Table[a[n], {n, 0, 39}] (* Jean-François Alcover, May 27 2023, after Alois P. Heinz *)