cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A357700 Noncubefree numbers k such that A073185(k) > 2*k.

Original entry on oeis.org

360360, 471240, 1801800, 2356200, 2522520, 2633400, 2784600, 3112200, 3187800, 3298680, 3686760, 3767400, 3898440, 3963960, 4019400, 4296600, 4462920, 4684680, 5128200, 5183640, 5682600, 5793480, 6126120, 6846840, 8011080, 8288280, 8953560, 10210200, 10450440
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2022

Keywords

Comments

The cubefree numbers k such that A073185(k) > 2*k are the cubefree abundant numbers (A357695).
The least odd term is (3/4) * prime(13)# * prime(197)# = 6.252...*10^517.

Examples

			360360 = 2^3 * 45045 is a term since it is divisible by a cube and A073185(360360) = 733824 > 2*360360.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p + If[e == 1, 0, p^2]; q[n_] := AnyTrue[(fct = FactorInteger[n])[[;;, 2]], # > 2 &] && Times @@ f @@@ fct > 2*n; Select[Range[2, 5*10^6], q]
  • PARI
    is(n) = {my(f = factor(n)); if(n == 1 || vecmax(f[,2]) < 3, return(0)); prod(i=1, #f~, 1 + f[i,1] + if(f[i,2]==1, 0, f[i,1]^2)) > 2*n};

A357696 Cubefree primitive abundant numbers: cubefree abundant numbers having no abundant proper divisor.

Original entry on oeis.org

12, 18, 20, 30, 42, 66, 70, 78, 102, 114, 138, 174, 186, 196, 222, 246, 258, 282, 308, 318, 354, 364, 366, 402, 426, 438, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822, 834, 836, 868, 894, 906, 942, 978, 1002
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2022

Keywords

Crossrefs

Intersection of A004709 and A091191.
Subsequence of A357695.
A249242 is a subsequence.
Cf. A308618.

Programs

  • Mathematica
    cubeFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 3; primQ[n_] := DivisorSigma[-1, n] > 2 && AllTrue[n/FactorInteger[n][[;; , 1]], DivisorSigma[-1, #] <= 2 &]; Select[Range[1500], cubeFreeQ[#] && primQ[#] &]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] > 2, return(0))); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, if(sigma(n/f[i,1], -1) > 2, return(0))); 1};

A357697 Odd cubefree abundant numbers.

Original entry on oeis.org

1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11025, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 17325, 18585, 19215, 19635, 20475, 21105, 21945, 22365, 22995, 23205, 24255, 24885, 25935, 26145, 26565, 26775
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2022

Keywords

Comments

First differs from A333950 at n = 1258. Terms that are not in A333950 include 8564325, 8565795, 8567325, ... and terms of A333950 that are not here include 1126125, 2096325, 2207205, ... .
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 16, 125, 1127, 11734, 116911, 1162781, 11638566, 116342286, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00116... .

Examples

			1575 = 3^2 * 5^2 * 7 is a term since it is odd and cubefree and sigma(1575) = 3224 > 2*1575.
		

Crossrefs

Intersection of A004709 and A005231.
Intersection of A005408 and A357695.
A112643 is a subsequence.
Cf. A000203 (sigma), A333950.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); q[1] = 0; q[n_] := AllTrue[(fct = FactorInteger[n])[[;;, 2]], # < 3 &] && Times @@ f @@@ fct > 2*n; Select[Range[1, 30000, 2], q]
  • PARI
    is(n) = {my(f); if(n%2 == 0, return(0)); f = factor(n); (n==1 || vecmax(f[,2]) < 3) && sigma(f, -1) > 2};

A387154 The least number k that is not n-free whose sum of n-free divisors is larger than 2*k.

Original entry on oeis.org

401120980260, 360360, 55440, 110880, 100800, 120960, 241920, 483840, 967680, 1935360, 3870720, 7741440, 15482880, 30965760, 61931520, 123863040, 247726080, 495452160, 990904320, 1981808640, 3963617280, 7927234560, 15854469120, 31708938240, 63417876480, 126835752960
Offset: 2

Views

Author

Amiram Eldar, Aug 19 2025

Keywords

Comments

n-free numbers are numbers that are not divisible by an n-th power larger than 1. E.g., A005117, A004709, and A046100 for n = 2, 3, and 4, respectively.
The sum of n-free divisors of a number is the sum of its divisors that are n-free numbers. E.g., A048250, A073185, and A385006 for n = 2, 3, and 4, respectively.
All the terms are in A025487.

Examples

			For n = 2, the numbers k such that A048250(k) > 2*k include all the squarefree abundant numbers (A087248). The least nonsquarefree number (A013929) k such that A048250(k) > 2*k is 401120980260 = 2^2*3*5*7*11*13*17*19*23*29*31.
For n = 3, the numbers k such that A073185(k) > 2*k include all the cubefree abundant numbers (A357695). The least noncubefree number (A046099) k such that A073185(k) > 2*k is A357700(1) = 360360 = 2^3*3^2*5*7*11*13.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 7, {401120980260, 360360, 55440, 110880, 100800}[[n-1]], 945 * 2^n]; Array[a, 26, 2]
  • PARI
    a(n) = if(n < 7, [401120980260, 360360, 55440, 110880, 100800][n-1], 945 * 2^n);

Formula

a(n) = 945 * 2^n for n >= 7.

A357699 Noncubefree numbers k such that A357698(k) > k.

Original entry on oeis.org

24, 40, 72, 120, 168, 200, 264, 280, 312, 360, 392, 408, 440, 456, 504, 520, 540, 552, 600, 616, 680, 696, 728, 744, 760, 792, 840, 888, 920, 936, 952, 984, 1032, 1064, 1128, 1144, 1160, 1176, 1224, 1240, 1272, 1288, 1320, 1368, 1400, 1416, 1464, 1480, 1496, 1560
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2022

Keywords

Comments

The cubefree numbers k such that A357698(k) > k are the cubefree abundant numbers (A357695).
The least odd term is (3/4) * prime(4)# * prime(11)# = 31588277195475.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 3, 32, 319, 3256, 32404, 323837, 3243328, 32425481, 324212022, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0324... .

Examples

			24 = 2^3 * 3 is a term since it is divisible by a cube and A357698(24) = 28 > 24.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p + If[e == 1, 0, p^2]; q[n_] := AnyTrue[(fct = FactorInteger[n])[[;;, 2]], # > 2 &] && Times @@ f @@@ fct > n; Select[Range[2, 2000], q]
  • PARI
    is(n) = {my(f = factor(n)); if(n == 1 || vecmax(f[,2]) < 3, return(0)); prod(i=1, #f~, 1 + f[i,1] + if(f[i,2]==1, 0, f[i,1]^2)) > n};

A387155 The number of n-free abundant numbers below the least number k that is not n-free whose sum of n-free divisors is larger than 2*k.

Original entry on oeis.org

22148167706, 52012, 10828, 24601, 23660, 29114, 58967, 118828, 238600, 478099, 957324, 1916191, 3834167, 7669094, 15335488, 30667762, 61337894, 122679755, 245357929, 490718137, 981456651, 1962956352, 3925957422, 7851819466, 15703524589, 31406984903, 62813576969
Offset: 2

Views

Author

Amiram Eldar, Aug 19 2025

Keywords

Comments

n-free numbers are numbers that are not divisible by an n-th power larger than 1. E.g., A005117, A004709, and A046100 for n = 2, 3, and 4, respectively.
The sum of n-free divisors of a number is the sum of its divisors that are n-free numbers. E.g., A048250, A073185, and A385006 for n = 2, 3, and, respectively.

Examples

			a(2) = 22148167706 because there are 22148167706 squarefree numbers k such that A048250(k) > 2*k (i.e., terms of A087248) that are less than the least nonsquarefree number k that has this property, A387154(2) = 401120980260.
a(3) = 52012 because there are 52012 cubefree numbers k such that A073185(k) > 2*k (i.e., terms of A357695) that are less than the least noncubefree number k that has this property, A387154(3) = 360360.
		

Crossrefs

Programs

  • Mathematica
    freeQ[n_, k_] := AllTrue[FactorInteger[n][[;; , 2]], # < k &];
    sigma[n_, k_] := Times @@ ((First[#]^(Min[Last[#], k - 1] + 1) - 1)/(First[#] - 1) & /@ FactorInteger[n]);
    a[n_] := Module[{m = 2, c = 0}, While[True, If[sigma[m, n] > 2*m, c++; If[!freeQ[m, n], Break[]]]; m++]; c-1];
  • PARI
    isfree(n, k) = if(n == 1, 1, my(e = factor(n)[,2]); for(i=1, #e, if(e[i] >= k, return(0))); 1);
    sigmafree(n, k) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(f[i,2],k-1)+1)-1)/(f[i,1]-1));}
    a(n) = {my(m = 2, c = 0); while(1, if(sigmafree(m, n) > 2*m, c++; if(!isfree(m, n), break)); m++); c-1;}

Formula

Let A_k(n) be the number of k-free abundant numbers that are not exceeding n. Then, a(n) = A_n(A387154(n)) - 1.
a(n) ~ c * 945 * 2^n, where c = A302991.
Showing 1-6 of 6 results.