A357847
Number of integer compositions of n whose length is twice their alternating sum.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 3, 1, 8, 11, 15, 46, 59, 127, 259, 407, 888, 1591, 2925, 5896, 10607, 20582, 39446, 73448, 142691, 269777, 513721, 988638, 1876107, 3600313, 6893509, 13165219, 25288200, 48408011, 92824505, 178248758, 341801149, 656641084, 1261298356
Offset: 0
The a(0) = 1 through a(9) = 15 compositions:
() . . (21) . (32) (1131) (43) (1142) (54)
(2121) (1241) (111141)
(3111) (2132) (112131)
(2231) (113121)
(3122) (114111)
(3221) (211131)
(4112) (212121)
(4211) (213111)
(311121)
(312111)
(411111)
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum, full triangle
A097805.
A357182 counts compositions w/ length = alternating sum, ranked by
A357184.
A357189 counts partitions w/ length = alternating sum, ranked by
A357486.
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,10}]
A357848
Heinz numbers of integer partitions whose length is twice their alternating sum.
Original entry on oeis.org
1, 6, 15, 35, 40, 77, 84, 90, 143, 189, 210, 220, 221, 224, 250, 323, 364, 437, 462, 490, 495, 504, 525, 528, 667, 748, 819, 858, 899, 988, 1029, 1040, 1134, 1147, 1155, 1188, 1210, 1320, 1326, 1375, 1400, 1408, 1517, 1564, 1683, 1690, 1763, 1904, 1938, 2021
Offset: 1
The terms together with their prime indices begin:
1: {}
6: {1,2}
15: {2,3}
35: {3,4}
40: {1,1,1,3}
77: {4,5}
84: {1,1,2,4}
90: {1,2,2,3}
143: {5,6}
189: {2,2,2,4}
210: {1,2,3,4}
220: {1,1,3,5}
221: {6,7}
224: {1,1,1,1,1,4}
These partitions are counted by
A357709.
The version for compositions is counted by
A357847.
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum, full triangle
A097805.
A357182 counts compositions w/ length = alternating sum, ranked by
A357184.
A357189 counts partitions w/ length = alternating sum, ranked by
A357486.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[1000],Length[primeMS[#]]==2sats[primeMS[#]]&]
Showing 1-2 of 2 results.
Comments