cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357740 Number of non-equivalent ways under symmetry in one axis that 2 non-attacking kings of different colors can be placed on an n X n board.

Original entry on oeis.org

0, 0, 17, 78, 234, 520, 1035, 1806, 2996, 4608, 6885, 9790, 13662, 18408, 24479, 31710, 40680, 51136, 63801, 78318, 95570, 115080, 137907, 163438, 192924, 225600, 262925, 303966, 350406, 401128, 458055, 519870, 588752, 663168, 745569, 834190, 931770, 1036296, 1150811, 1273038
Offset: 1

Views

Author

Natalia L. Skirrow, Oct 11 2022

Keywords

Comments

The number of king positions over which you iterate when making tablebases of positions containing pawns, wherein it is only equivalent under reflection in the x axis.

Examples

			For n=3, the a(3)=17 solutions are
   |   |  K|   |   |  K|k  |k  |k K| K |K  |K  | K |k  |k  | k | k |
   |  K|   |k  |k K|k  |   |  K|   |   |   |   |   |   |   |   |   |
k K|k  |k  |  K|   |   |  K|   |   |k  |k  | k | k | K |K  |K  | K |
		

Crossrefs

Cf. A035286 (no symmetry), A357723 (8-fold symmetry).

Programs

  • PARI
    a(n) = {(n-2)*(n-1)*((n+3)*n - 2 + (n % 2))/2} \\ Andrew Howroyd, Dec 31 2022
  • Python
    a=(lambda n: (n-2)*(n-1)*((n+3)*n-2+n%2)//2)
    

Formula

a(n) = n^4/2 - 4*n^2 + (9/2)*n - 1 if n is odd else n^4/2 - (9/2)*n^2 + 6*n - 2;
a(n) = n^4/2 - (17/4)*n^2 + (21/4)*n - 3/2 + (-1)^n*(-(1/4)*n^2 + (3/4)*n - 1/2);
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8);
a(n) = (n-2)*(n-1)*((n+3)*n - 2 + (n mod 2))/2.
G.f.: x^3*(17 + 44*x + 44*x^2 - 2*x^3 - 5*x^4 - 2*x^5)/((1 - x)^5*(1 + x)^3). - Andrew Howroyd, Dec 31 2022
E.g.f.: 2+(e^x*(2*x^4 + 12*x^3 - 3*x^2 + 6*x - 6) - e^(-x)*(x^2 + 2*x + 2))/4 = (cosh(x)*(x^4 + 6*x^3 - 2*x^2 + 2*x - 4) + sinh(x)*(x^4 + 6*x^3 - x^2 + 4*x - 2))/2 + 2.