cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A358871 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, A(1, 1) = 2, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n+1, k+(1+(-1)^(n+k))/2) + A(n, k+(1-(-1)^(n+k))/2).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 1, 3, 2, 3, 1, 3, 4, 5, 5, 4, 3, 2, 4, 3, 4, 3, 4, 2, 3, 5, 6, 5, 5, 6, 5, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 5, 7, 8, 7, 7, 8, 7, 5, 4, 3, 5, 4, 6, 5, 6, 5, 6, 4, 5, 3, 5, 7, 8, 7, 8, 9, 9, 8, 7, 8, 7, 5, 2, 6, 4, 7, 3, 7, 4, 7, 3, 7, 4, 6, 2
Offset: 0

Views

Author

Rémy Sigrist, Dec 04 2022

Keywords

Comments

This sequence is a variant of A357743: we can build this sequence:
- by starting from an isosceles right triangle with values 0, 1, 1:
0 <- right angle
/ \
/ \
1-----1
- and repeatedly applying the following substitution to each isosceles right triangle:
t t
/ \ --> /|\
/ \ / | \
u-----v u-u+v-v
^
| right angles
The sequence presents rich patterns (see Links section).

Examples

			Array A(n, k) begins:
  n\k |  0  1  2   3  4   5   6   7  8   9  10
  ----+---------------------------------------
    0 |  0  1  1   2  1   3   2   3  1   4   3
    1 |  1  2  3   3  4   4   5   4  5   5   7
    2 |  1  3  2   5  3   6   3   7  4   8   4
    3 |  2  3  5   4  5   5   8   6  7   7  10
    4 |  1  4  3   5  2   7   5   8  3   9   6
    5 |  3  4  6   5  7   6   9   7  8   8  11
    6 |  2  5  3   8  5   9   4   9  5  10   5
    7 |  3  4  7   6  8   7   9   6  7   7  12
    8 |  1  5  4   7  3   8   5   7  2   9   7
    9 |  4  5  8   7  9   8  10   7  9   8  13
   10 |  3  7  4  10  6  11   5  12  7  13   6
.
The first antidiagonals are:
             0
            1 1
           1 2 1
          2 3 3 2
         1 3 2 3 1
        3 4 5 5 4 3
       2 4 3 4 3 4 2
      3 5 6 5 5 6 5 3
     1 4 3 5 2 5 3 4 1
    4 5 7 8 7 7 8 7 5 4
		

Crossrefs

Programs

  • PARI
    A(n,k) = { my (nn = n\2, kk=k\2); if (n<=1 && k<=1, n+k, n%2==0 && k%2==0, A(n/2,k/2), n%2==0, A(n/2,k\2)+A(n/2,k\2+1), k%2==0, A(n\2,k\2)+A(n\2+1,k\2), A(n\2+1,k\2+(1+(-1)^(n\2+k\2))/2) + A(n\2, k\2+(1-(-1)^(n\2+k\2))/2)); }

Formula

A(n, k) = A(k, n).
A(n, 0) = A002487(n).
A(n, n) = 2*A002487(n).
Showing 1-1 of 1 results.