cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357749 Sorted list of nonzero numbers x, y, z that occur in solutions to the equation (x + y)^2 + (y + z)^2 + (z + x)^2 = 12*x*y*z.

Original entry on oeis.org

1, 3, 13, 61, 217, 291, 1393, 3673, 4683, 6673, 16693, 31971, 62221, 106153, 153181, 360517, 733933, 1054081, 1285131, 1709221, 2430493, 3516483, 4778353, 16848481, 17857153, 21717363, 27755113, 38745493, 55764867, 80725921, 98938381, 185236633, 302517517, 386781123
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2022

Keywords

Examples

			The first few solutions are (x, y, z) = (1, 1, 1), (1, 1, 3), (1, 3, 13), (1, 13, 61), (1, 61, 291), (1, 291, 1393), (1, 1393, 6673), (1, 6673, 31971), (3, 13, 217), (3, 217, 3673), ..., so 1, 3, 13, 61, 217, 291, ... are terms.
		

Crossrefs

Programs

  • PARI
    a357749(steps) = {L=List(); listput(L,[1,1,1]); listput(L,[1,1,3]); listput(L,[1,13,3]); for(n=1,steps,my(mp,mv);for(l=1,#L,mv=vecmax(L[l],&mp); my (a=L[l][1], b=L[l][2], c=L[l][3], s=a+b+c); if(mp==1,listput(L,[a,6*a*c-s,c]);listput(L,[a,b,6*a*b-s])); if(mp==2,listput(L,[6*b*c-s,b,c]);listput(L,[a,b,6*a*b-s])); if(mp==3,listput(L,[6*b*c-s,b,c]);listput(L,[a,6*a*c-s,c]))));M=List(); for (k=1, #L, for(j=1, 3, listput(M,L[k][j]))); vecsort(M,,8)};
    a357749(13)[1..35]