A357548 a(n) = coefficient of x^n in A(x) where A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ).
1, 2, 11, 50, 261, 1362, 7344, 40112, 222338, 1245476, 7043605, 40153390, 230518723, 1331576430, 7733934030, 45138530004, 264596552838, 1557101158092, 9195520745412, 54477134410680, 323668083179382, 1928047124332764, 11512382184408072, 68889282756213840
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 2*x^2 + 11*x^3 + 50*x^4 + 261*x^5 + 1362*x^6 + 7344*x^7 + 40112*x^8 + 222338*x^9 + 1245476*x^10 + 7043605*x^11 + 40153390*x^12 + ... where A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ). RELATED SERIES. A(x)^2 = x^2 + 4*x^3 + 26*x^4 + 144*x^5 + 843*x^6 + 4868*x^7 + 28378*x^8 + 165664*x^9 + 971013*x^10 + 5708132*x^11 + 33660362*x^12 + ... (x*A(x))^(1/2) = x + x^2 + 5*x^3 + 20*x^4 + 98*x^5 + 483*x^6 + 2499*x^7 + 13182*x^8 + 71030*x^9 + 388484*x^10 + ... + A357786(n)*x^n + ... x/Series_Reversion(A(x)) = 1 + 2*x + 7*x^2 - 21*x^4 + 147*x^6 - 1260*x^8 + 11907*x^10 - 120540*x^12 + 1279047*x^14 - 14029428*x^16 + 157788183*x^18 + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..520
Programs
-
PARI
{a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2/(1 - 4*x - 8*x^2 +x*O(x^n)) ) ) ); polcoeff(A, n)} for(n=1, 40, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A( x/(1 + 2*x + 8*x^2) )^2 = A( x^2/(1 + 2^2*x^2 + 8^2*x^4) ).
(2) A(x) = -A( -x/(1 - 4*x) ).
(3) A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ).
(4) A( x/(1 + 2*x) )^2 = A( x^2/(1 - 12*x^2) ).
(5) A( x/(1 + 4*x) )^2 = A( x^2/(1 + 4*x - 8*x^2) ).
Comments