cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357792 a(n) = coefficient of x^n in A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 1, 3, 7, 20, 60, 189, 613, 2039, 6918, 23850, 83315, 294282, 1049279, 3771685, 13653313, 49730599, 182130129, 670274170, 2477514172, 9193599339, 34237330355, 127914531260, 479318575375, 1800971051420, 6783809423496, 25611913597250, 96903193235645, 367363376407250
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n)^n, which holds as a formal power series in x.
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - C(x)^n)^n / (1 - C(x))^n, where C(x) = x + C(x)^2.

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 20*x^5 + 60*x^6 + 189*x^7 + 613*x^8 + 2039*x^9 + 6918*x^10 + 23850*x^11 + 83315*x^12 + ...
Let C = C(x) = x + C(x)^2, then
A(x) = 1 + C*(1 - C) + C^2*(1 - C^2)^2 + C^3*(1 - C^3)^3 + C^4*(1 - C(x)^4)^4 + C^5*(1 - C(x)^5)^5 + ... + C(x)^n * (1 - C(x)^n)^n + ...
also,
A(x) = 1 + x*(1) + x^2*(1 + C)^2 + x^3*(1 + C + C^2)^3 + x^4*(1 + C + C^2 + C^3)^4 + x^5*(1 + C + C^2 + C^3 + C^4)^5 + x^6*(1 + C + C^2 + C^3 + C^4 + C^5)^6 + ... + x^n*(1 + C + C^2 + C^3 + ... + C^(n-1))^n + ...
further,
A(x) = 1/(1 - C) - C^2/(1 - C^2)^2 + C^6/(1 - C^3)^3 - C^12/(1 - C^4)^4 + C^20/(1 - C^5)^5 + ... + (-1)^(n-1) * C(x)^(n*(n-1)) / (1 - C^n)^n + ...
where the related Catalan series, C(x) = (1 - sqrt(1 - 4*x))/2, begins:
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + ... + A000108(n)*x^(n+1) + ...
SPECIFIC VALUES.
The radius of convergence of the power series A(x) equals 1/4.
The power series A(x) converges at x = 1/4 to
A(1/4) = 1.578564238051657388445969550353857020762848420638921268996...
which equals the following sums:
(1) A(1/4) = Sum_{n>=0} (2^n - 1)^n / 2^(n*(n+1)),
(2) A(1/4) = Sum_{n>=1} (-1)^(n-1) * 2^n / (2^n - 1)^n.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));
    A = sum(m=0,n, C^m * (1 - C^m)^m); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));
    A = sum(m=0,n, x^m * (1 - C^m)^m/(1 - C)^m); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));
    A = sum(m=1,n+1, (-1)^(m-1) * C^(m*(m-1)) / (1 - C^m)^m); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

Given C(x) = x + C(x)^2, g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by:
(1) A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n.
(2) A(x) = Sum_{n>=1} (-1)^(n-1) * C(x)^(n*(n-1)) / (1 - C(x)^n)^n.
(3) A(x) = Sum_{n>=0} x^n * [ (1 - C(x)^n) / (1 - C(x)) ]^n.
(4) A(x) = Sum_{n>=1} -(-1/x)^n * C(x)^(n^2) / [ (1 - C(x)^n) / (1 - C(x)) ]^n.
a(n) ~ c * 2^(2*n) / n^(3/2), where c = 0.1930490961334149255878338532701052858837... - Vaclav Kotesovec, Mar 14 2023
Showing 1-1 of 1 results.