A357794 a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^(n+1))^n * A(x)^(n+1).
1, 3, 15, 114, 1086, 10824, 114382, 1252002, 14083275, 161810358, 1890774909, 22401092826, 268465408738, 3248818848876, 39643793276526, 487251937616006, 6026537732208078, 74954027622814455, 936840765257368687, 11761260253206563461, 148240496011414115676
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 15*x^2 + 114*x^3 + 1086*x^4 + 10824*x^5 + 114382*x^6 + 1252002*x^7 + 14083275*x^8 + 161810358*x^9 + 1890774909*x^10 + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
PARI
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(n=-#A, #A, n*(n+1)/2 * x^n * if(n==-1,0, (1 - x^(n+1) +x*O(x^#A) )^n) * Ser(A)^(n+1) ), #A-1) ); A[n+1]} for(n=0, 30, print1(a(n), ", "))
-
PARI
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(n=-#A, #A, (-1)^n * n*(n-1)/2 * x^(n*(n-2)) * if(n==1,0, 1/(1 - x^(n-1) +x*O(x^#A) )^n) / Ser(A)^(n-1) ), #A-1) ); A[n+1]} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 1 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^(n+1))^n * A(x)^(n+1).
(2) 1 = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)/2 * x^(n*(n-2)) / ((1 - x^(n-1))^n * A(x)^(n-1)).
Comments