A357804 a(n) = coefficient of x^(4*n+1)/(4*n+1)! in power series S(x) = Series_Reversion( Integral 1/(1 + x^4)^(3/2) dx ).
1, 36, 87696, 1483707456, 91329084354816, 14862901723860427776, 5279211177231308343054336, 3600188413031639396548043882496, 4300014195136238449156877005063520256, 8394333803654997846112872487491938363375616, 25378508500092778024069322428694679252236239896576
Offset: 0
Keywords
Examples
E.g.f.: S(x) = x + 36*x^5/5! + 87696*x^9/9! + 1483707456*x^13/13! + 91329084354816*x^17/17! + 14862901723860427776*x^21/21! + 5279211177231308343054336*x^25/25! + ... such that S( Integral 1/(1 + x^4)^(3/2) dx ) = x also C(x)^4 - S(x)^4 = 1, where C(x) = 1 + 6*x^4/4! + 8316*x^8/8! + 98843976*x^12/12! + 4698140798736*x^16/16! + 623259279912288096*x^20/20! + 186936162949832833285056*x^24/24! + ... + A357805(n)*x^(4*n)/(4*n)! + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
nmax = 20; Select[CoefficientList[InverseSeries[Series[x*(1/Sqrt[1 + x^4] + Hypergeometric2F1[1/4, 1/2, 5/4, -x^4])/2, {x, 0, 4*nmax + 4}], x], x], #1 != 0 &] * Table[(4*k+1)!, {k, 0, nmax}] (* Vaclav Kotesovec, Apr 09 2025 *)
-
PARI
/* Using Series Reversion (faster) */ {a(n) = my(S = serreverse( intformal( 1/(1 + x^4 +O(x^(4*n+4)))^(3/2) )) ); (4*n+1)!*polcoeff( S, 4*n+1)} for(n=0, 10, print1( a(n), ", "))
-
PARI
{a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^6 +O(x^(4*n+4))); C = 1 + intformal( S^3*C^3 ) ); (4*n)!*polcoeff( C, 4*n)} for(n=0, 10, print1( a(n), ", "))
Formula
Generating function S(x) = Sum_{n>=0} a(n)*x^(4*n+1)/(4*n+1)! and related function C(x) satisfies the following formulas.
For brevity, some formulas here will use S = S(x) and C = C(x), where C(x) = (1 + S(x)^4)^(1/4) is the e.g.f. of A357805.
(1) C(x)^4 - S(x)^4 = 1.
Integral formulas.
(2.a) S(x) = Integral C(x)^6 dx.
(2.b) C(x) = 1 + Integral S(x)^3 * C(x)^3 dx.
(2.c) S(x)^4 = Integral 4 * S(x)^3 * C(x)^6 dx.
(2.d) C(x)^4 = 1 + Integral 4 * S(x)^3 * C(x)^6 dx.
Derivatives.
(3.a) d/dx S(x) = C(x)^6.
(3.b) d/dx C(x) = S(x)^3 * C(x)^3.
Exponential formulas.
(4.a) C + S = exp( Integral (C^2 - C*S + S^2) * C^3 dx ).
(4.b) C - S = exp( -Integral (C^2 + C*S + S^2) * C^3 dx ).
(5.a) C^2 + S^2 = exp( 2 * Integral S*C^4 dx ).
(5.b) C^2 - S^2 = exp( -2 * Integral S*C^4 dx ).
Hyperbolic functions.
(6.a) C = sqrt(C^2 - S^2) * cosh( Integral (C^2 + S^2) * C^3 dx ).
(6.b) S = sqrt(C^2 - S^2) * sinh( Integral (C^2 + S^2) * C^3 dx ).
(7.a) C^2 = cosh( 2 * Integral S*C^4 dx ).
(7.b) S^2 = sinh( 2 * Integral S*C^4 dx ).
Explicit formulas.
(8.a) S(x) = Series_Reversion( Integral 1/(1 + x^4)^(3/2) dx ).
(8.b) C( Integral 1/(1 + x^4)^(3/2) dx ) = (1 + x^4)^(1/4).
Comments