A357824 Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, 2, ... 2, 3, 5, 9, 17, 33, 65, 129, ... 3, 6, 14, 36, 98, 276, 794, 2316, ... 3, 10, 42, 190, 882, 4150, 19722, 94510, ... 4, 20, 132, 980, 7812, 65300, 562692, 4939220, ... 4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..121, flattened
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) end: A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]]; A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)