A357843 Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).
1, 1, 1, 2, 7, 11, 17, 7, 3, 5, 7, 19, 25, 11, 25, 113, 143, 133, 163, 51, 14, 51, 61, 117, 391, 361, 391, 371, 431, 52, 119, 19, 81, 19, 81, 709, 799, 377, 799, 1553, 1733, 211, 467, 226, 467, 889, 979, 961, 1021, 991, 259, 503, 274, 2147, 2237, 274, 1141, 274
Offset: 1
Examples
Fractions begin with 1, 1/2, 1, 2/3, 7/6, 11/12, 17/12, 7/6, 3/2, 5/4, 7/4, 19/12, ...
Links
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
Crossrefs
Programs
-
Mathematica
Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
-
PARI
lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(numerator(s), ", "))};
-
Python
from fractions import Fraction from sympy import divisor_count def A357843(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, Oct 16 2022