A357851 Numbers k such that the half-alternating sum of the prime indices of k is 1.
2, 8, 18, 32, 45, 50, 72, 98, 105, 128, 162, 180, 200, 231, 242, 275, 288, 338, 392, 420, 429, 450, 455, 512, 578, 648, 663, 720, 722, 800, 833, 882, 924, 935, 968, 969, 1050, 1058, 1100, 1125, 1152, 1235, 1250, 1311, 1352, 1458, 1463, 1568, 1680, 1682, 1716
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 8: {1,1,1} 18: {1,2,2} 32: {1,1,1,1,1} 45: {2,2,3} 50: {1,3,3} 72: {1,1,1,2,2} 98: {1,4,4} 105: {2,3,4} 128: {1,1,1,1,1,1,1} 162: {1,2,2,2,2} 180: {1,1,2,2,3} 200: {1,1,1,3,3}
Crossrefs
The version for original alternating sum is A001105.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; Select[Range[1000],halfats[primeMS[#]]==1&]
Comments