A357859 Number of integer factorizations of 2n into distinct even factors.
1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 4, 1, 2, 1, 5, 1, 3, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 6, 1, 2, 1, 5, 1, 3, 1, 3, 1, 3, 1, 7, 1, 2, 1, 3, 1, 3, 1, 7, 1, 2, 1, 6, 1, 2, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2, 4, 12, 24, 32, 48, 60, 96: (4) (8) (24) (48) (64) (96) (120) (192) (2*4) (4*6) (6*8) (2*32) (2*48) (2*60) (2*96) (2*12) (2*24) (4*16) (4*24) (4*30) (4*48) (4*12) (2*4*8) (6*16) (6*20) (6*32) (2*4*6) (8*12) (10*12) (8*24) (2*6*8) (2*6*10) (12*16) (2*4*12) (4*6*8) (2*4*24) (2*6*16) (2*8*12)
Crossrefs
The version for partitions instead of factorizations is A000009.
Positions of 1's are A004280.
The non-strict version is A340785.
Including odd n gives A357860.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime-power divisors.
A050361 counts strict factorizations into prime powers.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[2*n],UnsameQ@@#&&OddQ[Times@@(#+1)]&]],{n,100}]