cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357872 a(n) = n * (3/2)^(v(n, 2) - v(n, 3)) where v(n, k) = valuation(n, k) mod 2 for n > 0.

Original entry on oeis.org

1, 3, 2, 4, 5, 6, 7, 12, 9, 15, 11, 8, 13, 21, 10, 16, 17, 27, 19, 20, 14, 33, 23, 24, 25, 39, 18, 28, 29, 30, 31, 48, 22, 51, 35, 36, 37, 57, 26, 60, 41, 42, 43, 44, 45, 69, 47, 32, 49, 75, 34, 52, 53, 54, 55, 84, 38, 87, 59, 40, 61, 93, 63, 64, 65, 66, 67, 68, 46, 105, 71, 108, 73, 111
Offset: 1

Views

Author

Werner Schulte, Oct 17 2022

Keywords

Comments

Equivalently: If n = 2^x * 3^y * f with gcd(f, 2) * gcd(f, 3) = 1 and x, y >= 0 and f > 0, then: a(n) = 2^(x - x mod 2 + y mod 2) * 3^(y - y mod 2 + x mod 2) * f for n > 0.
A self-inverse permutation of the natural numbers, i.e., a(a(n)) = n for all n.
Multiplicative but not completely multiplicative (see formula).

Examples

			n = 40320 = 2^(2*3+1)*3^(2*1+0)*5*7, then a(n) = 2^(2*3+0)*3^(2*1+1)*5*7 = 60480.
		

Crossrefs

Programs

  • Maple
    p := (n, k) -> modp(padic[ordp](n, k), 2): a := n -> n*(3/2)^(p(n, 2) - p(n, 3)):
    seq(a(n), n = 1..74); # Peter Luschny, Oct 20 2022
  • Mathematica
    a[n_] := (3/2)^Differences[Mod[IntegerExponent[n, {3, 2}], 2]][[1]] * n; Array[a, 100] (* Amiram Eldar, Oct 20 2022 *)
  • PARI
    a(n) = my(x=valuation(n,2), y=valuation(n,3), f=n/2^x/3^y, x2=x%2, y2 = y%2); 2^(x - x2 + y2) * 3^(y - y2 + x2) * f; \\ Michel Marcus, Oct 19 2022

Formula

Multiplicative with a(p^e) = p^e if e is even or p > 3, a(2^e) = 3 * 2^(e-1) and a(3^e) = 2 * 3^(e-1) if e is odd.
Let n = 2^(2*x+r) * 3^(2*y+s) * Product_{prime p > 3} p^z(p) with 0 <= r,s <= 1; then a(n) = 2^(2*x+s) * 3^(2*y+r) * Product_{prime p > 3} p^z(p); especially: a(n) = n * 2 / 3 if r < s, a(n) = n if r = s, and a(n) = n * 3 / 2 if r > s.
a(n) = n * (3/2)^(A096268(n-1) - A182581(n)) for n > 0.
Sum_{k=1..n} a(k) ~ (77/144) * n^2. - Amiram Eldar, Nov 29 2022