A357881 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|.
1, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 0, 2, 14, 0, 1, 0, 0, 6, 88, 0, 1, 0, 0, 6, 46, 694, 0, 1, 0, 0, 0, 36, 340, 6578, 0, 1, 0, 0, 0, 24, 210, 3308, 72792, 0, 1, 0, 0, 0, 0, 240, 2070, 36288, 920904, 0, 1, 0, 0, 0, 0, 120, 2040, 24864, 460752, 13109088, 0, 1, 0, 0, 0, 0, 0, 1800, 17640, 310632, 6551424, 207360912, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 0, 0, 0, 0, ... 0, 3, 2, 0, 0, 0, ... 0, 14, 6, 6, 0, 0, ... 0, 88, 46, 36, 24, 0, ... 0, 694, 340, 210, 240, 120, ...
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=0, n, (k*j)!*abs(stirling(n, k*j, 1)));
-
PARI
T(n, k) = if(k==0, 0^n, n!*polcoef(1/(1-(-log(1-x+x*O(x^n)))^k), n));
Formula
For k > 0, e.g.f. of column k: 1/(1 - (-log(1-x))^k).
T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n,j) * |Stirling1(j,k)| * T(n-j,k).