A357909 Primes p such that p+6, p+12, p+18, 4*p+37, 4*p+43, 4*p+49 and 4*p+55 are also all primes.
408211, 6375751, 6433741, 6718471, 19134931, 25280791, 63908851, 67078801, 152418151, 159268561, 217697911, 236220991, 237943591, 334030981, 363246211, 392644921, 406249171, 410652031, 428032441, 476660281, 478441291, 502777111, 552727711, 552855001, 554201731, 693654721, 816050071, 877207141
Offset: 1
Keywords
Examples
a(1) = 408211 is a term because 408211, 408211+6 = 408217, 408211+12 = 408223, 408211+18 = 408229 are primes (a "sexy" prime quadruple), the sum of this quadruple is 4*408211+36 = 1632880, and 1632880+1 = 1632881, 1632880+7 = 1632887, 1632880+13 = 1632893, 1632880+19 = 1632899 is another "sexy" prime quadruple.
Links
- Robert Israel, Table of n, a(n) for n = 1..115
Crossrefs
Cf. A023271.
Programs
-
Maple
Res:= NULL: count:= 0: for p from 1 by 30 while count < 40 do if isprime(p) and isprime(p+6) and isprime(p+12) and isprime(p+18) and isprime(4*p+37) and isprime(4*p+43) and isprime(4*p+49) and isprime(4*p+55) then Res:= Res, p; count:= count+1 fi od: Res;
Comments