cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357914 Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 1, -1, 0, 1, 2, 0, -1, -1, 1, 3, 2, -1, -2, 1, 1, 4, 5, 1, -3, -1, -1, 1, 5, 9, 6, -2, -4, -2, 0, 1, 6, 14, 15, 4, -6, -6, -2, 0, 1, 7, 20, 29, 19, -2, -12, -8, -2, 1, 1, 8, 27, 49, 48, 17, -14, -20, -10, -1, -1, 1, 9, 35, 76, 97, 65, 3, -34, -30, -11, -2, 0
Offset: 1

Views

Author

Paolo Xausa, Jan 18 2023

Keywords

Examples

			Array begins:
  n\k|  1   2   3    4    5    6     7     8     9    10  ...
  ---+-------------------------------------------------------
   1 |  1, -1, -1,   0,  -1,   1,   -1,    0,    0,    1, ... = A008683
   2 |  1,  0, -1,  -1,  -2,  -1,   -2,   -2,   -2,   -1, ... = A002321
   3 |  1,  1,  0,  -1,  -3,  -4,   -6,   -8,  -10,  -11, ... = A091555
   4 |  1,  2,  2,   1,  -2,  -6,  -12,  -20,  -30,  -41, ...
   5 |  1,  3,  5,   6,   4,  -2,  -14,  -34,  -64, -105, ...
   6 |  1,  4,  9,  15,  19,  17,    3,  -31,  -95, -200, ...
   7 |  1,  5, 14,  29,  48,  65,   68,   37,  -58, -258, ...
   8 |  1,  6, 20,  49,  97, 162,  230,  267,  209,  -49, ...
   9 |  1,  7, 27,  76, 173, 335,  565,  832, 1041,  992, ...
  10 |  1,  8, 35, 111, 284, 619, 1184, 2016, 3057, 4049, ...
  ...
		

Crossrefs

Cf. A008683 (row 1), A002321 (row 2), A091555 (row 3), A000012 (column 1), A368429 (main diagonal).
Discarding terms above the main diagonal: A001477 (column 2), A000096 (column 3), A005286 (column 4).

Programs

  • Mathematica
    A357914list[dmax_]:=With[{a=Reverse[NestList[Accumulate[Most[#]]&, MoebiusMu[Range[dmax]], dmax-1]]}, Array[Diagonal[a, #]&, dmax, 1-dmax]];
    A357914list[10] (* Generates 10 antidiagonals *)

Formula

T(1,k) = A008683(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1.