A357927 Number of subsets of [n] in which exactly half of the elements are Fibonacci numbers.
1, 1, 1, 1, 4, 5, 15, 35, 56, 126, 252, 462, 792, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 116280, 170544, 245157, 346104, 480700, 657800, 888030, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 18156204, 23535820, 30260340, 38608020, 48903492
Offset: 0
Keywords
Examples
a(6) = 15: {}, {1,4}, {1,6}, {2,4}, {2,6}, {3,4}, {3,6}, {4,5}, {5,6}, {1,2,4,6}, {1,3,4,6}, {1,4,5,6}, {2,3,4,6}, {2,4,5,6}, {3,4,5,6}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) option remember; `if`(n=0, 0, f(n-1)+ `if`((t-> ormap(issqr, [t-4, t+4]))(5*n^2), 1, 0)) end: a:= n-> binomial(n, f(n)): seq(a(n), n=0..38);
-
Mathematica
f[n_] := Module[{j}, For[j = Floor@Log[GoldenRatio, n], Fibonacci[j+1] <= n, j++]; j-1]; a[n_] := If[n == 0, 1, Binomial[n, f[n]]]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Nov 17 2022 *)