A357934 Products of two distinct lesser twin primes A001359.
15, 33, 51, 55, 85, 87, 123, 145, 177, 187, 205, 213, 295, 303, 319, 321, 355, 411, 447, 451, 493, 505, 535, 537, 573, 591, 649, 681, 685, 697, 717, 745, 781, 807, 843, 895, 933, 955, 985, 1003, 1041, 1111, 1135, 1177, 1189, 1195, 1207, 1257, 1293, 1345, 1383, 1405, 1507, 1555, 1563
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
omega := proc(n) nops(numtheory[factorset](n)) ; end proc: isA357934 := proc(n) local pe,p,q; if numtheory[bigomega](n)= 2 and omega(n) =2 then pe := ifactors(n)[2] ; p := op(1,op(1,pe)) ; q := op(1,op(2,pe)) ; if isprime(p+2) and isprime(q+2) then true; else false; end if; else false; end if; end proc: for n from 10 to 2000 do if isA357934(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Feb 13 2025
-
Mathematica
d = {};less = Select[Range[1607], PrimeQ[#] && PrimeQ[# + 2] &];Do[Do[AppendTo[d, less[[m]] less[[n]]], {m, n + 1, Length[less]}], {n, 1, Length[less] - 1}]; Take[Sort[d], 55]
-
PARI
list(lim)=my(v=List(),p=5); forprime(q=7,lim\3+2, if(q-p==2, my(r=3); forprime(s=5,min(lim\p+2,p), if(s-r==2, listput(v, p*r)); r=s)); p=q); Set(v) \\ Charles R Greathouse IV, Oct 21 2022