cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357934 Products of two distinct lesser twin primes A001359.

Original entry on oeis.org

15, 33, 51, 55, 85, 87, 123, 145, 177, 187, 205, 213, 295, 303, 319, 321, 355, 411, 447, 451, 493, 505, 535, 537, 573, 591, 649, 681, 685, 697, 717, 745, 781, 807, 843, 895, 933, 955, 985, 1003, 1041, 1111, 1135, 1177, 1189, 1195, 1207, 1257, 1293, 1345, 1383, 1405, 1507, 1555, 1563
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2022

Keywords

Crossrefs

Cf. A001359. Subsequence of A006881.

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    isA357934 := proc(n)
        local pe,p,q;
        if numtheory[bigomega](n)= 2 and omega(n) =2 then
            pe := ifactors(n)[2] ;
            p := op(1,op(1,pe)) ;
            q := op(1,op(2,pe)) ;
            if isprime(p+2) and isprime(q+2) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    for n from 10 to 2000 do
        if isA357934(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Feb 13 2025
  • Mathematica
    d = {};less = Select[Range[1607], PrimeQ[#] && PrimeQ[# + 2] &];Do[Do[AppendTo[d, less[[m]] less[[n]]], {m, n + 1, Length[less]}], {n,
      1, Length[less] - 1}]; Take[Sort[d], 55]
  • PARI
    list(lim)=my(v=List(),p=5); forprime(q=7,lim\3+2, if(q-p==2, my(r=3); forprime(s=5,min(lim\p+2,p), if(s-r==2, listput(v, p*r)); r=s)); p=q); Set(v) \\ Charles R Greathouse IV, Oct 21 2022