cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357980 Replace prime(k) with prime(A000720(k)) in the prime factorization of n, assuming prime(0) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 6, 1, 7, 4, 7, 3, 6, 5, 7, 2, 9, 5, 8, 3, 7, 6, 11, 1, 10, 7, 9, 4, 11, 7, 10, 3, 13, 6, 13, 5, 12, 7, 13, 2, 9, 9, 14, 5, 13, 8, 15, 3, 14, 7, 17, 6, 17, 11, 12, 1, 15, 10, 19, 7, 14, 9, 19, 4, 19, 11, 18, 7, 15, 10
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2022

Keywords

Comments

In the definition, taking A000720(k) in place of prime(A000720(k)) gives A357984.

Examples

			We have 90 = prime(1) * prime(2)^2 * prime(3), so a(90) = prime(0) * prime(1)^2 * prime(2) = 12.
		

Crossrefs

Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
The version for p instead of pi is A357977, strict A357978.
The triangular version is A357984.
A000040 lists the prime numbers.
A000720 = PrimePi.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
    Array[mtf[PrimePi],100]
  • PARI
    myprime(n) = if (n==0, 1, prime(n));
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = myprime(primepi(primepi(f[k,1])))); factorback(f); \\ Michel Marcus, Oct 25 2022