cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357990 Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = 1 for k > 0 and where T(n, k) = R(n, k+1) - R(n, k) for n > 0, k > 0. Here R(n, k) = T(A053645(n), k)*k^(A290255(n) + 1).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 7, 1, 7, 1, 1, 3, 19, 1, 9, 1, 1, 7, 5, 37, 1, 11, 1, 1, 1, 11, 7, 61, 1, 13, 1, 1, 15, 1, 15, 9, 91, 1, 15, 1, 1, 7, 65, 1, 19, 11, 127, 1, 17, 1, 1, 17, 19, 175, 1, 23, 13, 169, 1, 19, 1, 1, 3, 43, 37, 369, 1, 27, 15, 217, 1, 21
Offset: 0

Views

Author

Mikhail Kurkov, Nov 20 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1,    1,    1,    1, ...
   1,  1,   1,   1,   1,    1,    1,    1, ...
   3,  5,   7,   9,  11,   13,   15,   17, ...
   1,  1,   1,   1,   1,    1,    1,    1, ...
   7, 19,  37,  61,  91,  127,  169,  217, ...
   3,  5,   7,   9,  11,   13,   15,   17, ...
   7, 11,  15,  19,  23,   27,   31,   35, ...
   1,  1,   1,   1,   1,    1,    1,    1, ...
  15, 65, 175, 369, 671, 1105, 1695, 2465, ...
		

Crossrefs

Programs

  • PARI
    R(n,k)=my(L=logint(n, 2), A=n - 2^L); T(A, k)*k^(L - if(A>0, logint(A, 2) + 1) + 1)
    T(n,k)=if(n==0, 1, R(n, k+1) - R(n, k))
    
  • PARI
    T(n, k) = my(A = 2*n+1, B, C, v1, v2); v1 = []; while(A > 0, B=valuation(A, 2); v1=concat(v1, B+1); A \= 2^(B+1)); v1 = Vecrev(v1); A = #v1; v2 = vector(A, i, 1); for(i=1, A-1, B = A-i; for(j=1, B, C = B-j+k+1; v2[j] = v2[j]*C^v1[B] - v2[j+1]*(C-1)^v1[B])); v2[1] \\ Mikhail Kurkov, Apr 30 2024

Formula

Conjecture: T(n, 1) = A329369(n).