cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358034 Numbers k such that A234575(k,s) = s^2 where s = A007953(k).

Original entry on oeis.org

1, 113, 313, 331, 512, 1271, 2065, 2137, 2173, 2705, 3291, 3931, 4066, 4913, 5832, 6535, 6553, 6571, 6607, 6625, 6643, 6661, 6715, 6733, 6751, 6805, 6823, 6841, 7715, 13479, 13686, 15289, 15577, 17576, 19449, 19683, 21898, 23969, 49789, 49897, 49969
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 25 2022

Keywords

Comments

Numbers k such that, if the sum of digits of k is s, the quotient and remainder on division of k by s sum to s^2.

Examples

			a(3) = 313 is a term because the sum of digits of 313 is 7, 313 = 44*7+5, and 44+5 = 49 = 7^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local s,q,r;
      s:= convert(convert(n,base,10),`+`);
    r:= n mod s;
      q:= (n-r)/s;
    q+r = s^2
    end proc:
    select(filter, [$1..10^6]);
  • Python
    from itertools import count, islice
    def A358034_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(s:=sum(int(d) for d in str(n)))**2 == sum(divmod(n,s)),count(max(startvalue,1)))
    A358034_list = list(islice(A358034_gen(),30)) # Chai Wah Wu, Oct 26 2022