cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358039 a(n) is the Euler totient function phi applied to the n-th cubefree number.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 6, 4, 10, 4, 12, 6, 8, 16, 6, 18, 8, 12, 10, 22, 20, 12, 12, 28, 8, 30, 20, 16, 24, 12, 36, 18, 24, 40, 12, 42, 20, 24, 22, 46, 42, 20, 32, 24, 52, 40, 36, 28, 58, 16, 60, 30, 36, 48, 20, 66, 32, 44, 24, 70, 72, 36, 40, 36, 60, 24, 78, 40
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2022

Keywords

Comments

The analogous sequence with squarefree numbers is A049200.

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[100], Max[FactorInteger[#][[;; , 2]]] < 3 &]]
  • Python
    from sympy import mobius, integer_nthroot, totient
    def A358039(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return totient(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000010(A004709(n)).
Sum_{k=1..n} a(k) = (c/(2*zeta(3)))*n^2 + O(n^(3/2+eps)), where c = Product_{p prime} (1 - (p+1)/(p^3+p^2+1)) = 0.62583324412633345811... (Weiyi, 2004).
From Amiram Eldar, Oct 09 2023: (Start)
Sum_{n>=1} 1/(A004709(n)*a(n)) = Product_{p prime} (1 + (p^2+1)/((p-1)*p^3)) = 2.14437852780769816048... .
Sum_{n>=1} 1/a(n)^2 = Product_{p prime} (1 + (p^2+1)/((p-1)^2*p^2)) = 3.26032746607943673536... . (End)