A358039 a(n) is the Euler totient function phi applied to the n-th cubefree number.
1, 1, 2, 2, 4, 2, 6, 6, 4, 10, 4, 12, 6, 8, 16, 6, 18, 8, 12, 10, 22, 20, 12, 12, 28, 8, 30, 20, 16, 24, 12, 36, 18, 24, 40, 12, 42, 20, 24, 22, 46, 42, 20, 32, 24, 52, 40, 36, 28, 58, 16, 60, 30, 36, 48, 20, 66, 32, 44, 24, 70, 72, 36, 40, 36, 60, 24, 78, 40
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Zhu Weiyi, On the cube free number sequences, Smarandache Notions J., Vol. 14 (2004), pp. 199-202.
Programs
-
Mathematica
EulerPhi[Select[Range[100], Max[FactorInteger[#][[;; , 2]]] < 3 &]]
-
Python
from sympy import mobius, integer_nthroot, totient def A358039(n): def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return totient(m) # Chai Wah Wu, Aug 06 2024
Formula
Sum_{k=1..n} a(k) = (c/(2*zeta(3)))*n^2 + O(n^(3/2+eps)), where c = Product_{p prime} (1 - (p+1)/(p^3+p^2+1)) = 0.62583324412633345811... (Weiyi, 2004).
From Amiram Eldar, Oct 09 2023: (Start)
Sum_{n>=1} 1/(A004709(n)*a(n)) = Product_{p prime} (1 + (p^2+1)/((p-1)*p^3)) = 2.14437852780769816048... .
Sum_{n>=1} 1/a(n)^2 = Product_{p prime} (1 + (p^2+1)/((p-1)^2*p^2)) = 3.26032746607943673536... . (End)
Comments