cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379717 The second Jordan totient function applied to the cubefree numbers.

Original entry on oeis.org

1, 3, 8, 12, 24, 24, 48, 72, 72, 120, 96, 168, 144, 192, 288, 216, 360, 288, 384, 360, 528, 600, 504, 576, 840, 576, 960, 960, 864, 1152, 864, 1368, 1080, 1344, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 2352, 1800, 2304, 2016, 2808, 2880, 2880, 2520, 3480, 2304
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2024

Keywords

Crossrefs

Cf. A002117, A004709, A007434, A013661, A358039 (analogous with J_1 = phi), A379715, A379716, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := Max[FactorInteger[n][[;;, 2]]] < 3; j2 /@ Select[Range[100], cubeFreeQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    iscubefree(n) = if(n == 1, 1, vecmax(factor(n)[, 2]) < 3);
    list(lim) = apply(j2, select(iscubefree, vector(lim, i, i)));

Formula

a(n) = A007434(A004709(n)).
Sum_{n>=1} 1/a(n) = zeta(2) * zeta(4) / zeta(8) = 35 / (2*Pi^2) = 1.77312071374091100026... .
In general, Sum_{m cubefree} 1/J_k(m) = zeta(k) * zeta(2*k) / zeta(4*k), for k >= 2, where J_k is the k-th Jordan totient function.
In general, Sum_{m k-free} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^(2*k)), for k >= 2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3)^3 * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 1.23061243656940899916... . - Amiram Eldar, Jan 03 2025

A358040 a(n) is the number of divisors of the n-th cubefree number.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 4, 2, 6, 2, 4, 4, 2, 6, 2, 6, 4, 4, 2, 3, 4, 6, 2, 8, 2, 4, 4, 4, 9, 2, 4, 4, 2, 8, 2, 6, 6, 4, 2, 3, 6, 4, 6, 2, 4, 4, 4, 2, 12, 2, 4, 6, 4, 8, 2, 6, 4, 8, 2, 2, 4, 6, 6, 4, 8, 2, 4, 2, 12, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 2, 6, 6, 9, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2022

Keywords

Comments

The analogous sequence with squarefree numbers is A072048.

Crossrefs

Cf. A000005, A001620 (gamma), A004709, A072048, A073002 (-zeta'(2)), A147533 (2*gamma-1), A358039.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[100], Max[FactorInteger[#][[;;, 2]]] < 3 &]]
  • Python
    from sympy import mobius, integer_nthroot, divisor_count
    def A358040(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_count(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000005(A004709(n)).
Sum_{k=1..n} a(k) = (36*c_1/Pi^4) * n * (log(n) + (2*gamma - 1) - 24*zeta'(2)/Pi^2 - 4*c_2) + O(n^(1/2 + eps)), where c_1 = Product_{p prime} ((p^2+2*p+3)/(p+1)^2) = 1.58095136661854869148023... and c_2 = Sum_{p prime} p*log(p)/((p+1)*(p^2+2*p+3)) = 0.229224... (Weiyi, 2004).

A374456 The Euler phi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to phi: A002618, A049200, A323333, A358039.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374457.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A000010(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 / A065463^2 = 0.95051132596733153581... .

A371412 Euler totient function applied to the cubefull numbers (A036966).

Original entry on oeis.org

1, 4, 8, 18, 16, 32, 54, 100, 64, 72, 162, 128, 294, 144, 256, 500, 216, 486, 288, 400, 512, 432, 1210, 576, 648, 800, 1024, 1458, 2028, 2058, 864, 1176, 2500, 1800, 1152, 1296, 1600, 2048, 4624, 2000, 1728, 2352, 1944, 4374, 6498, 2304, 2592, 3200, 4096, 5292, 4000
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323333, A358039, A371413, A371414.

Programs

  • Mathematica
    Join[{1}, EulerPhi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
    (* or *)
    f[n_] := Module[{f = FactorInteger[n], p, e}, If[n == 1, 1, p = f[[;;, 1]]; e = f[[;;, 2]]; If[Min[e] > 2, Times @@ ((p-1) * p^(e-1)), Nothing]]]; Array[f, 20000]
  • PARI
    lista(max) = {my(f); print1(1, ", "); for(k = 2, max, f = factor(k); if(vecmin(f[, 2]) > 2, print1(eulerphi(f), ", ")));}

Formula

a(n) = A000010(A036966(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/((p-1)^2*p)) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 3/p^4 + 1/p^5) = 1.65532418864085918623... .
Showing 1-4 of 4 results.