A358040 a(n) is the number of divisors of the n-th cubefree number.
1, 2, 2, 3, 2, 4, 2, 3, 4, 2, 6, 2, 4, 4, 2, 6, 2, 6, 4, 4, 2, 3, 4, 6, 2, 8, 2, 4, 4, 4, 9, 2, 4, 4, 2, 8, 2, 6, 6, 4, 2, 3, 6, 4, 6, 2, 4, 4, 4, 2, 12, 2, 4, 6, 4, 8, 2, 6, 4, 8, 2, 2, 4, 6, 6, 4, 8, 2, 4, 2, 12, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 2, 6, 6, 9, 2
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Zhu Weiyi, On the cube free number sequences, Smarandache Notions J., Vol. 14 (2004), pp. 199-202.
Crossrefs
Programs
-
Mathematica
DivisorSigma[0, Select[Range[100], Max[FactorInteger[#][[;;, 2]]] < 3 &]]
-
Python
from sympy import mobius, integer_nthroot, divisor_count def A358040(n): def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return divisor_count(m) # Chai Wah Wu, Aug 06 2024
Formula
Sum_{k=1..n} a(k) = (36*c_1/Pi^4) * n * (log(n) + (2*gamma - 1) - 24*zeta'(2)/Pi^2 - 4*c_2) + O(n^(1/2 + eps)), where c_1 = Product_{p prime} ((p^2+2*p+3)/(p+1)^2) = 1.58095136661854869148023... and c_2 = Sum_{p prime} p*log(p)/((p+1)*(p^2+2*p+3)) = 0.229224... (Weiyi, 2004).
Comments