cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358145 a(n) = Sum_{k=0..n} binomial(n*k,k) * binomial(n*(n-k),n-k).

Original entry on oeis.org

1, 2, 16, 258, 6184, 195660, 7674144, 358788696, 19464910000, 1201543131276, 83134800597280, 6371436086078382, 535715287899894216, 49025879014213908144, 4850781409411286177248, 515964243167132532702480, 58710263012322890445554400
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2022

Keywords

Crossrefs

Main diagonal of A358050.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n*k, k)*binomial(n*(n-k), n-k));
    
  • PARI
    a(n) = sum(k=0, n, (n-1)^(n-k)*binomial(n^2+1, k));
    
  • PARI
    a(n) = sum(k=0, n, n^(n-k)*binomial((n-1)*n+k, k));

Formula

a(n) = Sum_{k=0..n} (n-1)^(n-k) * binomial(n^2+1,k).
a(n) = Sum_{k=0..n} n^(n-k) * binomial((n-1)*n+k,k).
a(n) ~ exp(n - 1/2) * n^n / 2. - Vaclav Kotesovec, Nov 01 2022

A358146 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 29, 5, 1, 1, 6, 33, 103, 99, 6, 1, 1, 7, 51, 253, 598, 351, 7, 1, 1, 8, 73, 506, 2073, 3601, 1275, 8, 1, 1, 9, 99, 889, 5351, 17577, 22165, 4707, 9, 1, 1, 10, 129, 1429, 11515, 58481, 152173, 138445, 17577, 10, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2022

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,     1, ...
  1, 2,   3,    4,     5,     6, ...
  1, 3,   9,   19,    33,    51, ...
  1, 4,  29,  103,   253,   506, ...
  1, 5,  99,  598,  2073,  5351, ...
  1, 6, 351, 3601, 17577, 58481, ...
		

Crossrefs

Columns k=0-5 give: A000012, A001477(n+1), A006134, A188675, A225612, A225615.
Main diagonal gives A226391.
Cf. A358050.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*j, j));
Showing 1-2 of 2 results.