cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367722 E.g.f. satisfies A(x) = exp(x*A(-x^3)).

Original entry on oeis.org

1, 1, 1, 1, -23, -119, -359, 1681, 38641, 269137, 599761, -22461119, -347288039, -8704873319, -73184815703, 16491842641, 26323288948321, 725566429691041, 7867441656997921, -20568394299884543, -4768992217846599479, -108339469662214468439
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2023

Keywords

Comments

This sequence is different from A358063.

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, (i-1)\3, (-1)^j*(3*j+1)*v[j+1]*v[i-3*j]/(j!*(i-1-3*j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/3)} (-1)^k * (3*k+1) * a(k) * a(n-1-3*k) / (k! * (n-1-3*k)!).

A357948 Expansion of e.g.f. exp( x * exp(-x^2) ).

Original entry on oeis.org

1, 1, 1, -5, -23, 1, 601, 2731, -13775, -219743, -313199, 15383611, 125451481, -811558175, -20767068503, -37852036949, 2898343066081, 28990920216001, -313289894357855, -8634009894555653, -3214642669500599, 2108734127922999361, 20183394611962437241
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-x^2))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (-n+2*k)^k/(k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (-n + 2*k)^k/(k! * (n - 2*k)!).
Showing 1-2 of 2 results.