A358070 Largest order of element in direct product S_n * S_n where S_n is the symmetric group.
1, 1, 2, 6, 12, 30, 30, 84, 120, 210, 420, 420, 840, 1260, 2310, 4620, 5460, 5460, 13860, 13860, 27720, 32760, 60060, 60060, 120120, 180180, 180180, 360360, 360360, 510510, 1021020, 1141140, 2042040, 3063060, 3423420, 6126120, 6846840, 6846840, 8953560, 12252240
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Dec 04 2022: (Start) The 15 partitions of 7 are the following: [ #] [ partition ] lcm( parts ) [ 1] [ 1 1 1 1 1 1 1 ] 1 [ 2] [ 1 1 1 1 1 2 ] 2 [ 3] [ 1 1 1 1 3 ] 3 [ 4] [ 1 1 1 2 2 ] 2 [ 5] [ 1 1 1 4 ] 4 [ 6] [ 1 1 2 3 ] 6 [ 7] [ 1 1 5 ] 5 [ 8] [ 1 2 2 2 ] 2 [ 9] [ 1 2 4 ] 4 [10] [ 1 3 3 ] 3 [11] [ 1 6 ] 6 [12] [ 2 2 3 ] 6 [13] [ 2 5 ] 10 [14] [ 3 4 ] 12 [15] [ 7 ] 7 The maximum value attained is 7 * 12, so a(7) = 84. (End)
Programs
-
Python3
x=[{1},{1}] for i in range(2,40): u=[] for j in range(1,i): u.extend([k*j//math.gcd(k,j) for k in x[i-j]]) x.append(set(u)) xx=[set([i*j//math.gcd(i,j) for i in t for j in t]) for t in x] print([max(i) for i in xx][2:])
Comments