A358091 Triangle read by rows. Coefficients of the polynomials P(n, x) = 2^(n-2)*(3*n-1)* hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x). T(n, k) = [x^k] P(n, x).
1, 5, -6, 16, -60, 48, 44, -288, 660, -440, 112, -1056, 4032, -7280, 4368, 272, -3360, 17952, -52224, 81600, -45696, 640, -9792, 67200, -267520, 656640, -930240, 496128, 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664
Offset: 1
Examples
[1] 1; [2] 5, -6; [3] 16, -60, 48; [4] 44, -288, 660, -440; [5] 112, -1056, 4032, -7280, 4368; [6] 272, -3360, 17952, -52224, 81600, -45696; [7] 640, -9792, 67200, -267520, 656640, -930240, 496128; [8] 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664;
Programs
-
SageMath
def P(n): h = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x) return h.series(x, n+1).polynomial(SR) for n in range(1, 9): print(P(n).list()) # To evaluate the polynomials use: def p(n, t): return Integer(P(n)(x=t).n()) # For example the next statements yield A062236 and A000309. print([p(n, -1/2) for n in range(1, 21)]) print([(-1)^n*p(n + 1, 1) for n in range(0, 22)])