cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358100 a(n) is the smallest integer that has exactly n divisors whose decimal digits are in strictly decreasing order.

Original entry on oeis.org

1, 2, 4, 6, 12, 20, 30, 40, 80, 60, 252, 120, 240, 540, 360, 630, 420, 960, 1440, 840, 1260, 2880, 3360, 4320, 2520, 6720, 5040, 8640, 10080, 15120, 50400, 20160, 40320, 30240, 171360, 90720, 383040, 60480, 120960, 181440, 362880, 544320, 937440, 786240, 2056320
Offset: 1

Views

Author

Bernard Schott, Nov 01 2022

Keywords

Comments

This sequence is finite since A009995 is finite with 1022 nonzero terms, hence the last term is a(1022) = lcm of the 1022 positive terms of A009995.

Examples

			For n=7, the divisors of 30 are {1, 2, 3, 5, 6, 10, 15, 30} of which 7 have their decimal digits in strictly decreasing order (all except 15). No integer < 30 has 7 such divisors, so a(7) = 30.
		

Crossrefs

Similar: A087997 (palindromic), A355303 (undulating), A357172 (increasing order).

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, Greater @@ IntegerDigits[#] &]; seq[len_, nmax_] := Module[{v = Table[0, {len}], n = 1, c = 0, i}, While[c < len && n < nmax, i = s[n]; If[i <= len && v[[i]] == 0, v[[i]] = n; c++]; n++]; v]; seq[45, 3*10^6] (* Amiram Eldar, Nov 01 2022 *)
  • PARI
    f(n) = sumdiv(n, d, my(dd=digits(d)); vecsort(dd, , 12) == dd); \\ A358099
    a(n) = my(k=1); while(f(k)!=n, k++); k; \\ Michel Marcus, Nov 01 2022

Extensions

More terms from Amiram Eldar, Nov 01 2022