A358111 The multiplicative inverse of the coefficients of the factorially normalized Bernoulli polynomials (provided they do not vanish, otherwise by convention 0).
1, -2, 1, 12, -2, 2, 0, 12, -4, 6, -720, 0, 24, -12, 24, 0, -720, 0, 72, -48, 120, 30240, 0, -1440, 0, 288, -240, 720, 0, 30240, 0, -4320, 0, 1440, -1440, 5040, -1209600, 0, 60480, 0, -17280, 0, 8640, -10080, 40320, 0, -1209600, 0, 181440, 0, -86400, 0, 60480, -80640, 362880
Offset: 0
Examples
0] 1; 1] -2, 1; 2] 12, -2, 2; 3] 0, 12, -4, 6; 4] -720, 0, 24, -12, 24; 5] 0, -720, 0, 72, -48, 120; 6] 30240, 0, -1440, 0, 288, -240, 720; 7] 0, 30240, 0, -4320, 0, 1440, -1440, 5040; 8] -1209600, 0, 60480, 0, -17280, 0, 8640, -10080, 40320; 9] 0, -1209600, 0, 181440, 0, -86400, 0, 60480,-80640, 362880;
References
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, 1924. (page 31)
Links
- Yassine El Maazouz and Jim Pitman, The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution, arXiv:2210.02027 [math.PR], Oct. 2022.
Programs
-
Maple
T := proc(n, k) coeff(bernoulli(n, x) / n!, x, k); ifelse(% = 0, 0, 1/%) end: seq(seq(T(n, k), k = 0..n), n = 0..9);
-
Mathematica
T[n_, k_] := With[{c = Coefficient[BernoulliB[n, x]/n!, x, k]}, If[c == 0, 0, 1/c]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2024, after Maple code *)
Formula
T(n, k) = ([x^k] b(n, x))^(-1), provided [x^k] b(n, x) != 0, otherwise 0.
Integral_{x=0..1} b(n, x)*b(m, x) = (-1)^(m + 1)*b(n + m, 1). [N. E. Nørlund]
Note that n!*b(n, 1) are the Bernoulli numbers (with B_1 = 1/2).
Comments