cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358111 The multiplicative inverse of the coefficients of the factorially normalized Bernoulli polynomials (provided they do not vanish, otherwise by convention 0).

Original entry on oeis.org

1, -2, 1, 12, -2, 2, 0, 12, -4, 6, -720, 0, 24, -12, 24, 0, -720, 0, 72, -48, 120, 30240, 0, -1440, 0, 288, -240, 720, 0, 30240, 0, -4320, 0, 1440, -1440, 5040, -1209600, 0, 60480, 0, -17280, 0, 8640, -10080, 40320, 0, -1209600, 0, 181440, 0, -86400, 0, 60480, -80640, 362880
Offset: 0

Views

Author

Peter Luschny, Oct 30 2022

Keywords

Comments

The factorially normalized Bernoulli polynomials are defined inductively by:
b(0, x) = 1, (d/dx) b(n, x) = b(n-1, x), and Integral_{x=0..1} b(n, x) = 0.

Examples

			0]        1;
1]       -2,        1;
2]       12,       -2,     2;
3]        0,       12,    -4,      6;
4]     -720,        0,    24,    -12,     24;
5]        0,     -720,     0,     72,    -48,   120;
6]    30240,        0, -1440,      0,    288,  -240,   720;
7]        0,    30240,     0,  -4320,      0,  1440, -1440,   5040;
8] -1209600,        0, 60480,      0, -17280,     0,  8640, -10080, 40320;
9]        0, -1209600,     0, 181440,      0, -86400,    0,  60480,-80640, 362880;
		

References

  • N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, 1924. (page 31)

Crossrefs

Cf. A227830 (column 0), A196838/A196839 (Bernoulli polynomials), A000142.

Programs

  • Maple
    T := proc(n, k) coeff(bernoulli(n, x) / n!, x, k); ifelse(% = 0, 0, 1/%) end:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := With[{c = Coefficient[BernoulliB[n, x]/n!, x, k]}, If[c == 0, 0, 1/c]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2024, after Maple code *)

Formula

T(n, k) = ([x^k] b(n, x))^(-1), provided [x^k] b(n, x) != 0, otherwise 0.
Integral_{x=0..1} b(n, x)*b(m, x) = (-1)^(m + 1)*b(n + m, 1). [N. E. Nørlund]
Note that n!*b(n, 1) are the Bernoulli numbers (with B_1 = 1/2).