cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358265 Expansion of e.g.f. 1/(1 - x * exp(x^3/6)).

Original entry on oeis.org

1, 1, 2, 6, 28, 160, 1080, 8470, 76160, 771120, 8671600, 107245600, 1446984000, 21150929800, 332950217600, 5615507898000, 101024594070400, 1931055071545600, 39082823446867200, 834945681049480000, 18776164188349568000, 443348081412556320000
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2022

Keywords

Crossrefs

Programs

  • Maple
    g := 1/(1-x*exp(x^3/6)) ;
    taylor(%,x=0,70) ;
    L := gfun[seriestolist](%) ;
    seq( op(i,L)*(i-1)!,i=1..nops(L)) ; # R. J. Mathar, Mar 13 2023
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(x^3/6))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k/(6^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(6^k * k!).
a(n) ~ n! / ((1 + LambertW(1/2)) * (2*LambertW(1/2))^(n/3)). - Vaclav Kotesovec, Nov 13 2022

A370930 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x^2/2)) ).

Original entry on oeis.org

1, 1, 4, 33, 408, 6735, 139680, 3494715, 102486720, 3448812465, 131019940800, 5547190409145, 259025571826560, 13225167056035935, 733000949195074560, 43830500433645600675, 2812624056522882201600, 192798872614347464289825
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*exp(x^2/2)))/x))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^k*(2*n-2*k)!/(2^k*k!*(n-2*k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (n-2*k)^k * (2*n-2*k)!/(2^k * k! * (n-2*k)!).
Showing 1-2 of 2 results.